

Don't we need any integrated carbon indicator in order to manage forests sustainably?

Jean-Luc Peyron

IUFRO, Knoxville, 07 June 2012

Background: Forest carbon issues

- Land use changes
- Carbon sequestration by growing forests
- Storage and residence time of carbon in
 - soils,
 - trees
 - forest products
- Removals of roundwood
- Material substitution due to the use of forest products
- Energy substitution due to use of fuelwood/wood residues
- Energy substitution at the end of service life
- Emissions due to forest activities

Background: Literature

- At the macroeconomic level
 - In connection with Climate Convention (UNFCCC and KP)
 - Reporting and accounting
 - Best strategy for the forest sector and climate mitigation
 - In connection also with information towards customers (carbon footprint)
- At the stand level
 - Carbon flows and stocks (still reporting and accounting)
 - Not often comprehensive (sequestration, storage, substitution)
 - Not often in value with the use of discounting.
- Some references however.

Background: Carbon and indicators

- Pan european criteria and indicators of sustainable forest management describe mainly the carbon sink
- Indicators should be useful for all issues quoted previously
- An integrated indicator should be useful for decision makers
- This would allow to carry out multicriteria analyses.
- One single indicator is waited for carbon (and another for biodiversity !!!)

Background: History of forest economics

- Similar discussion now with carbon as those three centuries ago about the best rotation age
 - To reduce the wood shortage
 - To increase owners' revenues.
- Réaumur (1721) : the highest mean annual increment
- Buffon (1734): the higghest current annual increment (!)
- Duhamel du Monceau (1764): particular case of a fully regulated forest
- Varenne de Fenille (1791) gives the rule to find the highest mean annual increment (equal to the current increment) and understands the role of the discount (interest) rate.

Background: Conclusion for action

- Economics is useful to think about the right indicator with the use of the concepts of
 - Opportunity cost (avoided emissions)
 - Discount rate.

Contents

- Background (done)
- Quantification of carbon issues
- Combination in a single indicator
- Numerical application.

Quantification with simplifications

- In order to avoid complex formulations, main simplifications are implemented:
 - Evenaged stands
 - No thinnings
 - No annual administrative costs nor annual revenues
 - Tree mortality is not explicitly mentioned
 - Only wood and carbon economies are considered
 - The use of half-life
- Because of the two first simplifications, the application case concerns poplar groves.

Quantification of plantation

- The plantation costs are considered separately because they are allocated
 - partly to wood production
 - and partly to carbon sequestration.

$$-Do\frac{1}{1-e^{-rn}}$$

- where
 - **Do** is the plantation cost (at time o) (3 500 €/ha)
 - *r* is the discount rate (4%)
 - *n* is the rotation age (to be determined)
 - the fraction expresses an infinite series of rotations beginning at time o.

$$p(n).q(n).V(n)\frac{e^{-rn}}{1-e^{-rn}}$$

- where
 - *n* is the rotation age
 - p(n) is the stumpage price at age n (up to $45 \in /m_3$)
 - V(n) is the growing stock (up to 300 m3/ha)
 - q(n) is the marketed share of this growing stock (0 to 0.6)
 - the fraction expresses an infinite series of rotations beginning at time n

$$p_c.c.z.(\int_o^n V'(t).e^{-rt}dt)\frac{1}{1-e^{-rn}} \approx p_c.c.z.V(n).e^{-rd}\frac{1}{1-e^{-rn}}$$

- *V*(*n*) is the growing stock
- *V*'(*t*) is its current increment
- *d* is the half-life of the stock growing from o to n
- z is the expansion factor to branches and roots (1.6)
- c is the conversion factor from m³ to tons of CO₂ (0.76)
- p_c is the price of the ton of CO₂ (o to 100 \in /tCO₂)

Quantification of substitution

$$p_c.a(n).c.q(n).V(n).e^{-rn}\frac{1}{1-e^{-rn}}$$

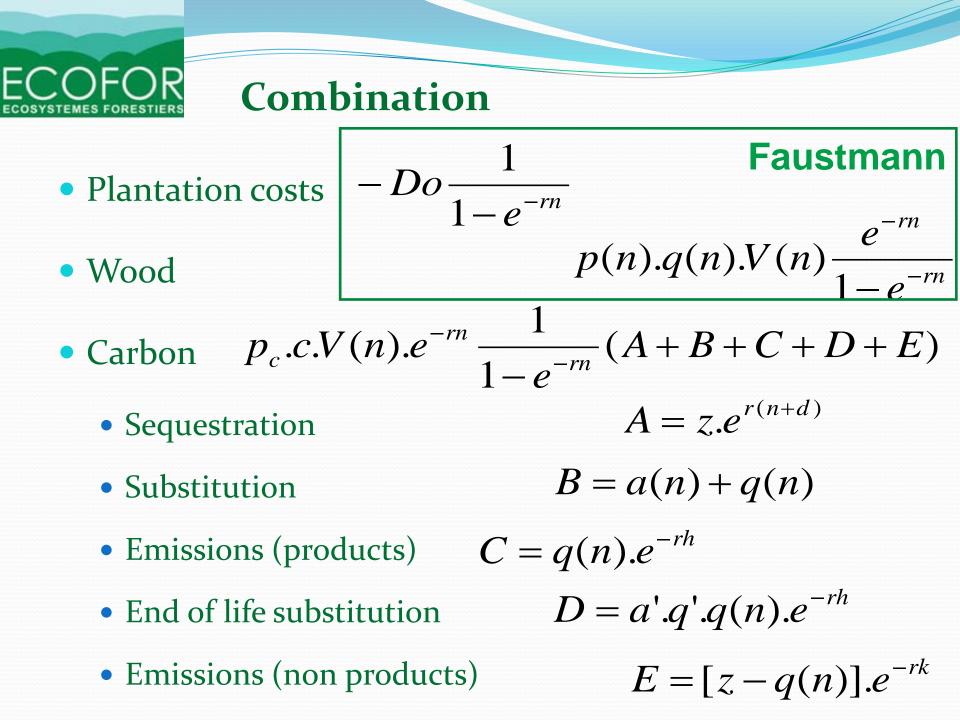
- *V*(*n*) is the growing stock
- q(n) is the market (product) share of the growing stock
- *c* is the conversion factor from m^3 to tons of CO_2 (0.76)
- *a*(*n*) denotes the avoided emissions due to forest products
- p_c is the price of the ton of CO₂ (from 0 to 100 \in /tCO₂)
- a(n) could reach 0.67 tCO₂/tCO₂ for energy substitution and 2.1 tCO₂/tCO₂ for material substitution (LCA, Rüter, 2012). Here it depends heavily on the end-product mix

$$p_c.c.q(n).V(n).e^{-r(n+h)} \frac{1}{1-e^{-rn}}$$

- *V*(*n*) is the growing stock
- q(n) is the market (product) share of the growing stock
- *c* is the conversion factor from m^3 to tons of CO_2 (0.76)
- p_c is the price of the ton of CO₂ (from 0 to 100 \in /tCO₂)
- *h* stands for the half-life of the product mix.

$$p_c.a'.c.q'.q(n).V(n).e^{-r(n+h)} \frac{1}{1-e^{-rn}}$$

- *V*(*n*) is the growing stock
- q(n) is the market (product) share of the growing stock
- *q*': share of products used for energy at their end of life (0.2)
- *c* is the conversion factor from m^3 to tons of CO_2 (0.76)
- *a*' denotes avoided emissions due to forest products (0.3)
- p_c is the price of the ton of CO₂ (from 0 to 100 \in /tCO₂)
- *h* stands for the half-life of the product mix (0 to 20 years).


$$p_c.c.(z-q(n)).V(n).e^{-r(n+k)}\frac{1}{1-e^{-rn}}$$

- *V*(*n*) is the growing stock
- q(n) is the market (product) share of the growing stock
- *z* is the expansion factor to branches and roots
- *c* is the conversion factor from m^3 to tons of CO_2 (0.76)
- p_c is the price of the ton of CO₂ (from 0 to 100 \in /tCO₂)
- *k* stands for the half-life of the non products (10 years)

 $p_{c}.(S_{f}-S_{a}).e^{-rl}$

- S_f is the carbon stock in forest soils at steady state
- S_a is the carbon stock in the soil before afforestation
- p_c is the price of the ton of CO₂ (from 0 to 100 \in /tCO₂)
- *l* stands for the half-life for the constitution of the new carbon stock in soils.
- This phenomenum occurs only once.
- A variation of the carbon stock of soils could also be taken into account for each regeneration period.
- These changes are not taken into account in what follows.

Case-study: reference scenario

- Main features of the scenario
 - Mentioned previously
 - *p_c*=20 €/tCO2
- Results
 - Faustmann: 1250 €/ha and 23 years
 - Wood (and partly plantation costs): 3918 €/ha and 22 years
 - Carbon (and partly plantation costs): 3331 €/ha and 27 years
 - Total: 7103 €/ha and 24 years
- For 24 years
 - Sequestration : 1211 €/ha
 - Substitution: 5561 €/ha
 - Emissions: -2274 €/ha

Case-study: scenarios

- Main features of the scenarios
 - *p_c*=100 €/tCO2
 - Increase of p_c along time from 20 to 100 \in /tCO2

	Reference	High carbon price	Increasing carbon price
Wood	3918 €/ha – 22 years	6127 €/ha -21 years	6052 €/ha – 21 years
Carbon	3331 €/ha – 27 years	25258 €/ha – 27 years	32077 €/ha – 30 years
Global	7103 €/ha – 24 years	30753 €/ha – 25 years	36077 €/ha - 30 years
Sequestration Substitution Emissions	5561 €/ha 2605 €/ha -2274 €/ha	27739 €/ha 13131 €/ha -11881 €/ha	33899 €/ha 14164 €/ha -11592 €/ha

- It is possible to generalise the Faustmann formula to take into account sequestration, substitution and the residence time in forests and in forest products
- The complexity is mainly due to the number of different cases to be analysed
- Additional information could be carried out concerning thinnings, change in soil carbon stock
- The uncertainty lies in parameters
- Sensitivity analyses can be done

http://www.gip-ecofor.org

Thank you for your attention