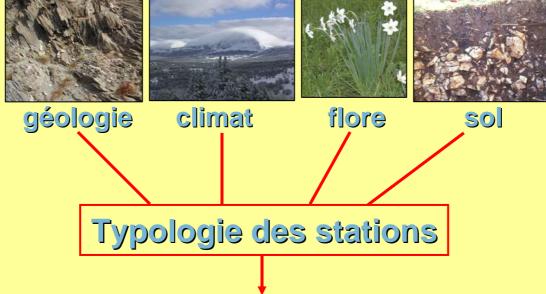
Développement, spatialisation et validation d'indices bioclimatiques

Conventions de recherche 2005.18 et 2005.19

Lebourgeois F. et Piedallu C.

UMR LERFOB ENGREF-INRA 1092 - Equipe Ecologie Forestière - ENGREF Nancy

Cluzeau C. et Nédeltcheva T.


Inventaire Forestier National - Echelon de Nancy

Badeau V.

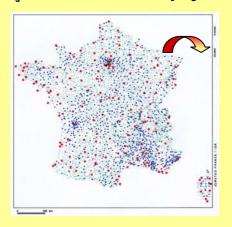
UMR Ecologie et Ecophysiologie Forestière INRA-UHP 1137 - INRA Champenoux

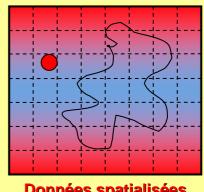
Choix et potentialités des essences Habitats et valeurs patrimoniales

Échelle d'analyse locale : placettes ; massif, région

Accessibilité aux données... climat

- nb réduit de stations (Météo-France essentiellement)
- représentativité (topo, pente, expo...)


=> sécheresse : facteur clé dans la définition des stations...
Comment la caractériser facilement et à grande échelle ?


Objectifs du projet

- Synthèse des indicateurs de sécheresse utilisables pour le gestionnaire
 - ⇒ facile à calculer (type de données, nombre, échelle temporelle)
 - ⇒ spatialisable (Système Information Géographique, SIG)

Données ponctuelles transposées

Données spatialisées (continues) sous SIG

- Calcul et Spatialisation de ces indices à différentes échelles
- Validation à l'aide de données mesurées ou à l'aide de la végétation (herbacées ou arborées... gradients écologiques)

Les indices bioclimatiques de la littérature

- Les différents types
- Les données nécessaires

Lebourgeois F. et Piedallu C. - 2005 - Appréhender le niveau de sécheresse dans le cadre des études stationnelles et de la gestion forestière à partir d'indices bioclimatiques, Revue Forestière Française, 57 (4), 331-356.

LES TYPES D'INDICES

⇒ combinaison de deux facteurs de l'atmosphère (T, P, ETP) indice de sécheresse « atmosphérique »

Combinaisons simples: Tet/ou P

- De Martonne : [P/(T+10)] ou [12p/(t+10)]
- Emberger: 100 P/ (M²-m²)

M = moyenne des maxima du mois le plus chaud ; m = moyenne des minima du mois le plus froid

• Gams-Michalet:
$$\cot(\alpha) = \frac{P - \left(\frac{900^{\circ} \text{ Ait.}}{100} \times \frac{P}{10}\right)}{\text{Alt.}}$$

Combinaisons complexes : ETP, ETR => Bilan Hydrique

- ETP Thornthwaite (T)
- ETP Turc (T et Rg)
- ETP Hargreaves (T, △T, Ra)

LES DONNEES NECESSAIRES

- Modèle Numérique de Terrain (MNT, BD Alti IGN) achat ENGREF
 Altitude => pente, exposition, topographie (50 m)
- Données climatiques de base (P et T) spatialisées : AURELHY
 Analyse Utilisant le RELief pour l'Hydrométéorologie (1 km) achat ENGREF
 (Bénichou et LeBreton 1987)
- Rayonnement solaire global (Rg)...
 - => modèle pertinent à l'échelle locale et valide à l'échelle nationale ?

HELIOS
SATMOS
SOLAR
ANALYST

(Fu et Rich 2000)

oqoT	Lat.	Néb.	Résolution			\
×	X	X	Selon MNT (50 m)	ENGREF	Création / calcul	
	X	×	3 km Mesures satellitales	INRA	Compilation de données / mesures	
X			Selon MNT	IFN	Comparaison / calcul	

Validation

88 postes 3 essences

33 postes

88 postes

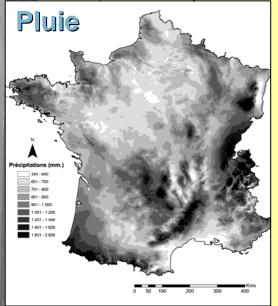
Service d'Archivage et de Traitement Météorologique des Observations Spatiales

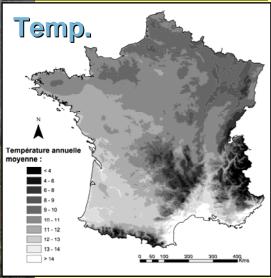
Modèle HELIOS:

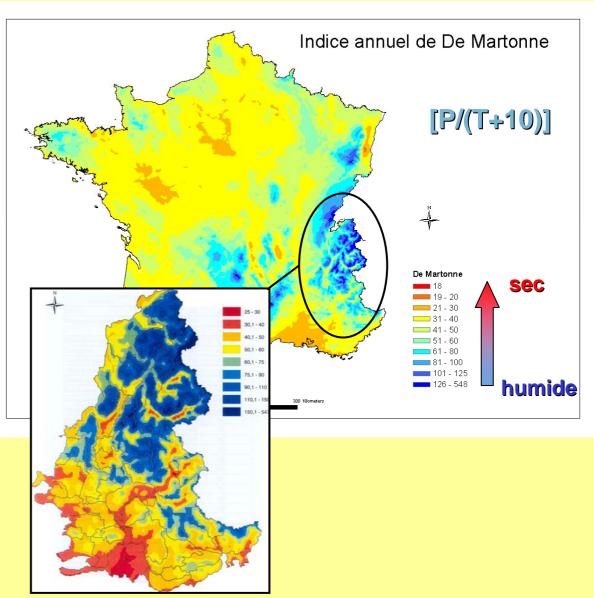
Piedallu C., Gégout J. C., A multiscale approach to radiation calculation for predictive vegetation. Ecological modelling (soumis)

Lebourgeois et al.

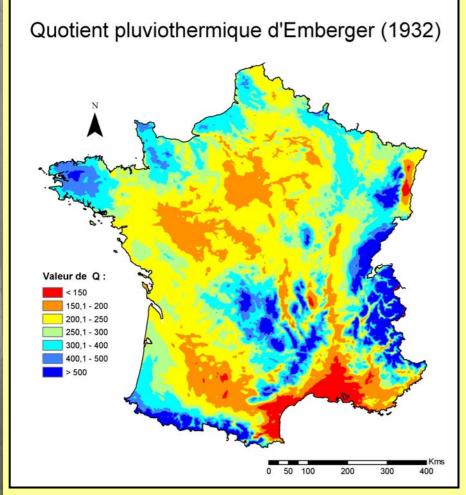
Colloque ECOFOR « Typologie des Stations » - 21 et 22 novembre 2006

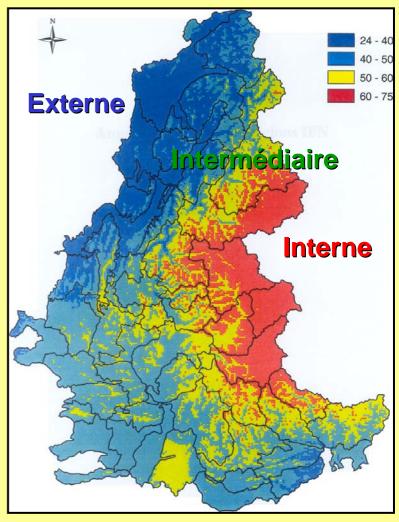



Exemples d'indices bioclimatiques spatialisés


Lebourgeois F. et Piedallu C. - 2005 - Appréhender le niveau de sécheresse dans le cadre des études stationnelles et de la gestion forestière à partir d'indices bioclimatiques, Revue Forestière Française, 57 (4), 331-356.

Moyenne 1961-1990 (AURELHY)





Lebourgeois et al.

Colloque ECOFOR « Typologie des Stations » - 21 et 22 novembre 2006

Gams-Michalet

Estimation du rayonnement global

- Présentation du modèle HELIOS
- Comparaison de trois méthodes

HELIOS... un modèle de calcul de rayonnement multi - échelles

Piedallu C., Gégout J. C., A multiscale approach to radiation calculation for predictive vegetation. *Ecological modelling* (soumis)

Elaboration du modèle

Le rayonnement global (Rg) présente 3 composantes :

Rg = Rdir + Rdiff + Rref

Rdir = ray. direct; Rdiff = ray. diffusé par le ciel; Rref = ray. réfléchi par le sol

• Relations géométriques soleil / surface terrestre : dépend de la forme de la terre, sa révolution et sa rotation => détermine le gradient latitudinal

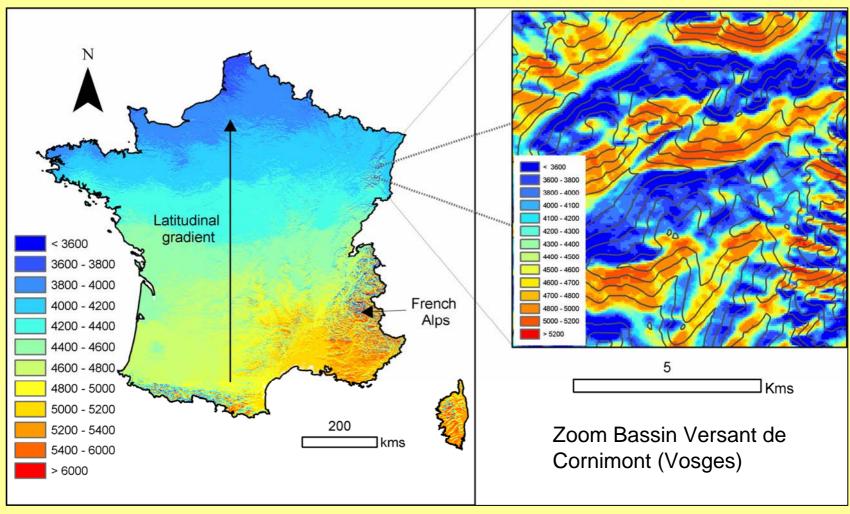
- Topographie: fortes variations locales
 - * pente, exposition => joue sur I 'angle d 'incidence
 - * masque (résolution selon le MNT)

Atténuation atmosphérique :

dépend des gaz, des particules solides ou liquides

- => en fonction de l'épaisseur de l'atmosphère
- => l'altitude

nébulosité


(pondération à partir de l'extrapolation des données de 88 postes de Météo-France)

Calcul Rg journalier et cumul sur les périodes (MJ/m²)

Cartographie Rg annuelles

France

année: 1200 à 7200 MJ/m² (moy: 4500)

Lebourgeois et al.

Colloque ECOFOR « Typologie des Stations » - 21 et 22 novembre 2006

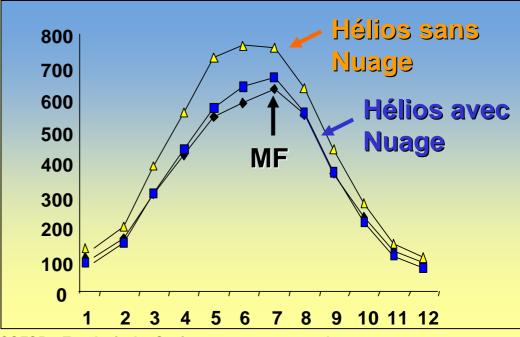
Validation du modèle

Calcul des Rg sur 88 postes Météo France

altitude: 0-2780 m; pente: 0-38°; ttes expo

	Jan.	Feb.	Mar.	april	mai	june	july	Aug.	Sept.	Oct.	Nov.	Dec.
M.F.	129	191	351	455	583	619	648	572	397	254	147	105
Helios	112	174	337	467	606	661	681	580	402	240	129	91
biais	-17	-17	-13	13	23	42	33	9	4	-14	-18	-14
r	0.94	0.91	0.90	0.78	0.77	0.79	0.83	0.81	0.85	0.88	0.91	0.94

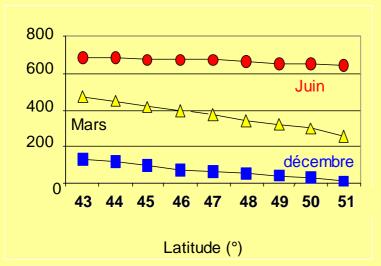
Hiver: légère sous-estimation

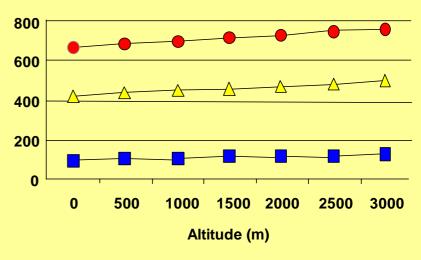

 $r = 0.88 (r^2 = 0.78)$

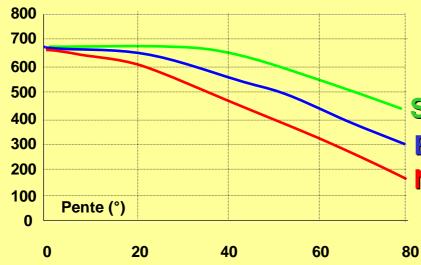
Biais (année):

36.9 MJ/m² (< 1%)

Effet de la prise en compte de la couverture nuageuse (dif : 10 à 20%)




Variabilité du rayonnement



: latitude

Pente et exposition (cas de juin)

SUD - 0 à 40° : stabilité

EST

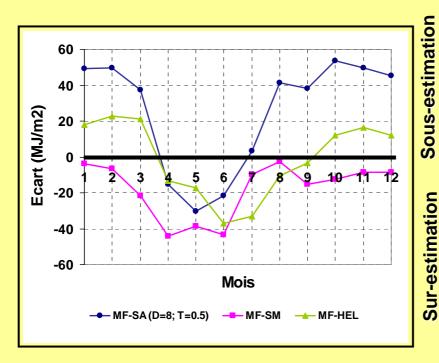
NORD ----- 0 à 40° : env. -30%

Lebourgeois et al.

Colloque ECOFOR « Typologie des Stations » - 21 et 22 novembre 2006

2. Comparaison des trois estimations

Nédeltcheva T., Cluzeau C., Badeau V.


Corrélation (r²) entre les données estimées (SA, HEL, SAT) et les données Météo-France (MF) (31 postes)

	Type	Paramètres	Résol.
Solar Analyst	calcul	Торо	MNT (50 m)
Hélios	calcul	Topo, Lat, Neb	MNT (50 m)
Satmos	mesures	Lat, Neb	3 km

	Jan	Fév	Mars	Avril	Mai	Juin	Juil	Août	Sept	Oct	Nov	Déc	Année	
Solar Analyst									_					
Helios	0.9	0.85	0.82	0.62	0.55	0.56	0.67	0.59	0.67	0.78	0.89	0.91	0.76	1961-90
Satmos	0.92	0.92	0.93	0.91	0.84	0.84	0.88	0.82	0.87	0.86	0.92	0.92	0.93	1996-2002

SAT > HEL > SA

Printemps-Eté < Automne-hiver

Satmos:

sur-estimation toute année

Solar:

sous-estimation sauf printemps

Helios

sous-estimation hiver sur-estimation été

Comparaison des estimations de l'ETP

Lebourgeois F., et Piedallu C., - 2005 - Appréhender le niveau de sécheresse dans le cadre des études stationnelles et de la gestion forestière à partir d'indices bioclimatiques, Revue Forestière Française, 57, (4), 331-356.

Formule

Données

Tables

Thornthwaite (1948)...

toC

insolation = f(latitude, saison)

$$ETP(mm/mois) = 16* \left[\left(\frac{10*t}{\mathsf{I}} \right) \right]^{a} *F \qquad \mathsf{I} = \sum_{1}^{12} \mathsf{Ij} \operatorname{avec} \mathsf{Ij} = \left(\frac{t}{5} \right)^{1.514}$$

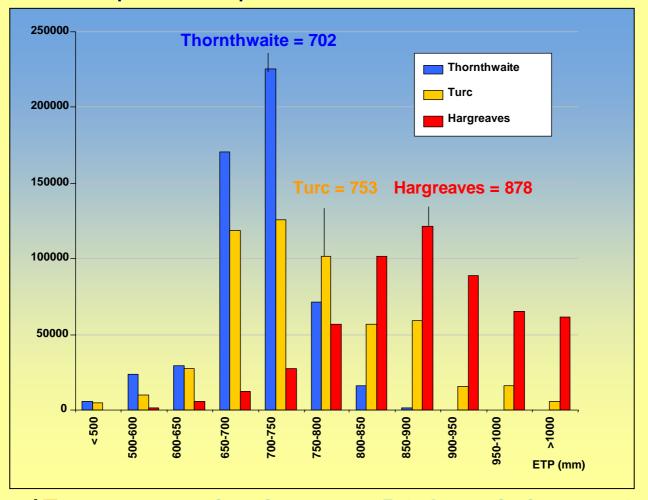
$$I = \sum_{1}^{12} Ij \text{ avec } Ij = \left(\frac{t}{5}\right)^{1.514}$$

Turc (1955, 1961)...

toC

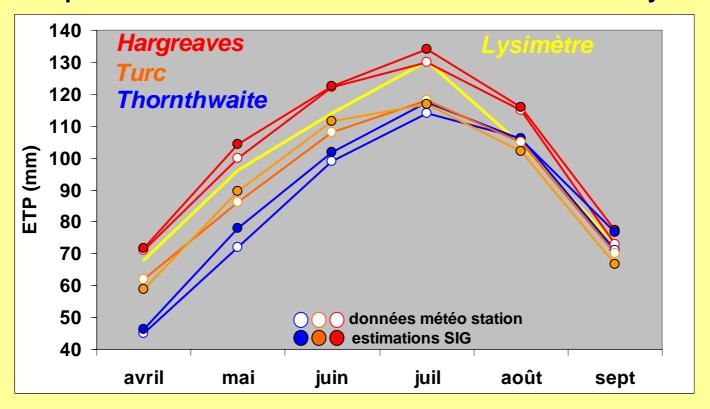
Rg (cal/cm²/j)

$$ETP(mm/n\ jours) = n*0.013*(Rg+50)*\left(\frac{t}{t+15}\right)$$
 (avec Rg issus du modèle Helios)


Hargreaves et Allen (2003)... t°C, ∆t

Ra (mm/j)

$$ETP(mm/jour) = 0.0023*Ra*(t+17.8)*\sqrt{\Delta t}$$


Histogramme de répartition des valeurs des différentes ETP - France entière - pas kilométrique - valeurs annuelles 1961-1990

Thorn. / Turc: sous-estimation pour 65% du territoire; $\Delta > 100$ mm pour 20% **Harg. / Turc**: sur-estimation de \pm 100 mm pour 73% du territoire

Comparaison des estimations à des mesures en cases lysimétriques

Lysimétre : période 1971-1976 - Station INRA de Guyancourt - La Minière (lat. 48°9 ; long. 2°1 ; alt. 161 m) (d'après Choisnel et al. 1992).

(même classement avec données de la station INRA Avignon - Montfavet - période 1967-1976)

Perspectives

- Comparaison des différentes estimations du Rayonnement dans des situations de pente (Hélios, Satmos, Solar Analyst)
- Calcul des bilans hydriques « climatiques » (P-ETP) et
- « édaphiques » (prise en compte de la RUM)...
 - => problème spatialisation RUM
- Validation de la pertinence des indices pour expliquer la distribution des ressources forestières (herbacées et arborées) :
 - => meilleur(s) indice (s) pour expliquer...
 - · répartition et niches ;
 - · potentialités : régénération, croissance...
- Prédiction à long terme (climat / sol / niche / potentialité)

À suivre!