Forest Carbon and Management Impacts on Optimal Rotation Ages for Loblolly Pine in the Southern U.S.

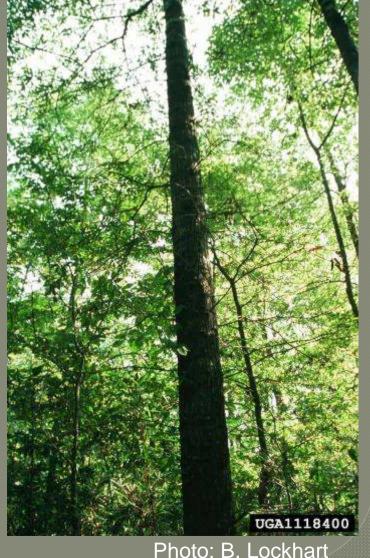
Don Hodges, Don Grebner, Robert Grala, and Prakash Nepal University of Tennessee and Mississippi State University

May 27, 2010

Forestry's Role in Climate Policy

Increasing interest in carbon sequestration through forestry in the U.S.

U.S. forests offset 25% of CO₂ emissions during 1952-1995


Afforestation considered as promising option to sequester additional carbon

Outline

Briefly describe major carbon sequestration programs in the United States.

Identify general and technical issues associated with these programs.

Evaluate trade-offs for loblolly pine management regimes producing traditional forest products, carbon, and/or bioenergy feedstock.

Existing carbon registries and trading programs

Chicago Climate Exchange (CCX) Regional Greenhouse Gas Initiative (RGGI) The California Climate Action Registry (CCAR)

NGOs such as Climate Neutral Network, Clean Air-Cool Planet and Environmental Resources Trust, Ducks Unlimited, and EcoSecurities

Chicago Climate Exchange

Greenhouse gas (GHG) emission reduction and trading program for emission sources and offset projects in the United States, Canada, Mexico and Brazil.

The most prominent emissions reduction and trading system in North America for all six greenhouse gases

www.chicagoclimateexchange.com

Eligible Emission Offset Projects

Landfill methane reduction in the U.S.;

- Agricultural methane reduction in the U.S.;
- Carbon sequestration in U.S. forestry projects;
- Carbon sequestration in U.S. agricultural soils;

Fuel switching, landfill methane, renewable energy and forestry projects in Brazil.

CCX Participants

American Electric Power Green Mountain Power Manitoba Hydro TECO Energy, Inc. Ford Motor Company Rolls-Royce Motorola, Inc. IBM Aggregate Climate Credits Corporation

- International Paper
- Mead/Westvaco Corp.
- Temple-Inland, Inc.
- The City of Chicago
- University of Iowa
- University of Oklahoma
- **Bayer Corporation**
- Dow Corning
- Ducks Unlimited, Inc.

Methods: CCX Forestry Protocols

Typical contract length: for 15 years

Afforestation protocol

- Harvesting/thinning not allowed
- 20% of earned credit placed in reserve pool

Managed forests protocol

- Need evidence of SFM
- Harvests allowed except clear-cuts
- Must establish a baseline of carbon stock
- 20% of credit placed in reserve pool
- Continuation from afforestation to managed forest contract possible

Source: ritchiewiki.com

Methods: CCX Requirements

Long-lived wood products protocol

- Need evidence of SFM
- Credits earned for carbon in use and landfills 100 years from the harvest
- No reserve pool category

Source: climateforests.com

Regional Greenhouse Gas Initiative (RGGI)

- Cooperative effort between 10 northeastern U.S. states – CT, DE, MA, MD, NH, NJ, NY, RI, VT
- First mandatory, market-based CO₂ emissions reduction program in the U.S.
- Cap CO₂ emissions from Power generation sector
- **Requires 10 % reduction in CO₂ by 2018**

www.rggi.org

HOW RGGI WORKS

Multi-state CO₂ emissions budget that will decrease until 10 % less than initial value

- Individual CO₂ trading program in each state via state-level regulations
- Electric power generators hold allowances equal to CO₂ emissions for 3 years
- Generators can buy, sell, or trade CO₂ emissions allowances

www.rggi.org

HOW RGGI WORKS

Proceeds from allowance auctions support 'low carbon intensity" energy solutions

Offsets to help companies meet compliance regulations

RGGI OFFSET PROGRAMS

- Landfill Methane Reduction
- Reduced Sulfur hexaflouride Emissions
- □ AFFORESTATION
- **Reduced/Avoided CO₂ Emissions**
- Reduced/Avoided Methane Emissions from agriculture

www.rggi.org

Ducks Unlimited, Inc. (DU)

Ducks Unlimited conserves, restores, and manages wetlands and associated habitats for North America's waterfowl.

How DU's Carbon Sequestration Program Works

Agricultural landowners contact DU to place a carbon easement on their land.

- DU works with the landowner to estimate carbon quantity and eligibility on proposed rules.
- DU markets carbon to investors.
- If there is investor interest, DU offers a competitive price to landowner for acquisition or easement.
- A full biological site assessment is conducted.

How DU's Carbon Sequestration Program Works

An easement is negotiated, often with recreational activities such as hunting and fishing allowed.

A restoration and management plan is developed. The carbon ownership rights for the property are conveyed to DU, including periodic access to monitor the easement and measure carbon.

DU pays the landowner for the easement.

DU conveys the carbon rights to an investor in a separate agreement.

Proposed Federal Policy *Waxman-Markey & Kerry-Lieberman Bills*

Allowable Domestic Offset Projects

- Afforestation/Reforestation
- Improved forest management
- Harvested wood products carbon accounting
- Avoided forest conversion
- Reduced deforestation

International REDD Offset Projects

General Issues

Uncertainty of markets

Diversity of programs

Use of easements versus contracts

Use of genetically modified trees

Biofuel markets

Technical Issues

Difference in contract lengths between programs

Optimal rotation ages

Lack of growth and yield information between trees species

Assessing impacts on southern U.S. Forest Management

Review of effects on rotation decisions with carbon sequestration and enhanced bioenergy markets

Preliminary empirical investigation of loblolly pine (*Pinus taeda*) mgmt.

Conclusions from empirical results

Basic Faustmann formulation

$$PV_F = (p_w v(T) - g)e^{-rT}$$

where
 p_{w =} timber price
 v(T) = timber growth function
 g = regeneration cost
 r = discount rate

Inclusion of carbon cost

 $\mathbf{PV}_{\mathbf{F}} = \mathbf{p}_{\mathbf{w}} v(\mathbf{T}) e^{-rT} - \mathbf{p}_{\mathbf{c}} \alpha (1 - \beta) v(\mathbf{T}) e^{-rT}$ where

 p_c = implicit social value of carbon α = conversion factor (volume wood to c) β = fraction of harvested timber in longterm storage

Present Value of Carbon Uptake

$$\mathbf{PV}_{\mathbf{c}} = \int_{0}^{t} (\mathbf{p}_{\mathbf{c}} \alpha v(\mathbf{t}) e^{-rt} dt)$$

where

 p_c = implicit social value of carbon α = conversion factor (volume wood to c) v(T) = timber growth function

Present Value of Timber and Carbon

$$PV = \frac{PV_{c} + PV_{F}}{1 - r^{T}}$$

From: van Kooten et al. 1995

Enhanced Bioenergy Demand

Modeled as increased prices for small-diameter stems (pulpwood and smaller)

Establishment Costs

Activity	USD per ha
Herbicides (broadcast)	\$159.73
Herbicides weed control (band)	\$54.98
Mechanical site preparation	\$148.26
Seedlings and labor	\$197.34
Land use tax	\$17.30
Annual management costs	\$12.36

Prices

Activity	USD per metric ton
Pine Sawtimber	\$32.94
Pine Chip-N-Saw	\$16.58
Pine Pulpwood	\$9.20
Carbon	\$4.41

Timber Only Results

Optimal Net Present Value:

\$ 837.05/ha 35 years

Optimal Land Expectation Value:

\$967.20/ha 34 years

Timber and Carbon Results

Conclusions

- Timber and carbon is not necessarily incompatible.
 In fact, joint production often is a better option.
- As expected, carbon sequestration increased rotation length relative to timber only for all discount rates evaluated.
- The "pickling" factor reduces the optimal rotation length but not as dramatically as in some other studies such as Bjørnstad and Skonhoft (2002).
- Increased prices for woody biomass do not affect decisions substantially - < 2 years

Conclusions

Limitations

- Prices and costs were assumed to be constant
- Carbon in other pools (soil, forest floor) were not considered
- Only selected management regimes were considered. Does not incorporate the effect of various silvicultural improvements
- No participation costs related to enrollment in carbon offset programs were considered. Startup costs such as cost of inventory and management plans were not included in the analysis.