

IUFRO Unit 4.05.00 International Symposium on How to both harvest and preserve forests more or better? Paris, 26 -30 May 2010

Comparison of various sources of uncertainty in stand level net present value estimates

Markus Holopainen¹, Antti Mäkinen¹, Jussi Rasinmäki³, Kari Hyytiäinen², Saeed Bayazidi¹, Ilona Pietilä¹

¹ University of Helsinki, Finland
 ² MTT Agrifood Research Finland
 ³ Simosol Itd

9.7.2010

1 INTRODUCTION

- Value of forest crucial information for landowners
 - real estate business
 - land divisions and exchanges
 - forestry investments

$$\max_{R} NPV = \sum_{t=1}^{\infty} \operatorname{\mathsf{\P}imber}_{t} + \operatorname{Amenity}_{t} e^{-rt}$$

R – decision variables: harvests, silvicultural operations, etc

Problem: NPV is subject to several sources of uncertainty

Several sources of uncertainty:

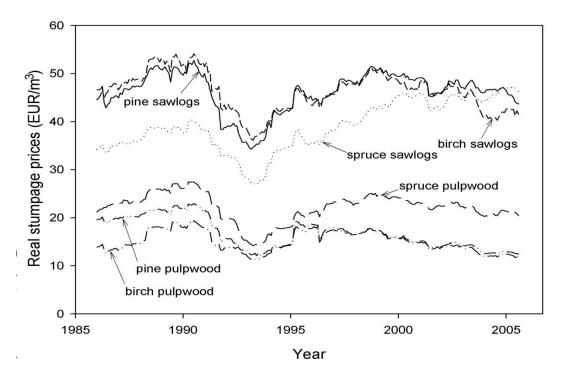
- economic parameters (prices, interest rate)
- natural hazards (windfalls, fire, insect damages)
- effects of climate change
- quality of the forest inventory data
- uncertainty related to the growth predictions and future production of products and services

Objective: Assess the relative importance of three important sources of uncertainty in forest NPV computations

- (1) Variations in timber assortment prices
- (2) Errors in inventory information (initial stand state)
- (3) Random errors in growth and yield predictions

Definition of uncertainty in this study: variation in estimated forest NPVs caused by random variations in timber prices, quality of inventory information and growth predictions

2 METHOD AND DATA


A case study forest estate consisting of 40 stands

Carry out Monte Carlo simulations for each stand in order to obtain probability distributions of NPV

- no uncertainty
- different combinations of three sources of uncertainty

100 iterations for each stand

Geometric mean reverting process (cf. Insley 2002, Yoshimoto 2009)

$$dp = \eta \, \mathbf{\Phi} - p \, \mathbf{d}t + \sigma \, p \, dz$$

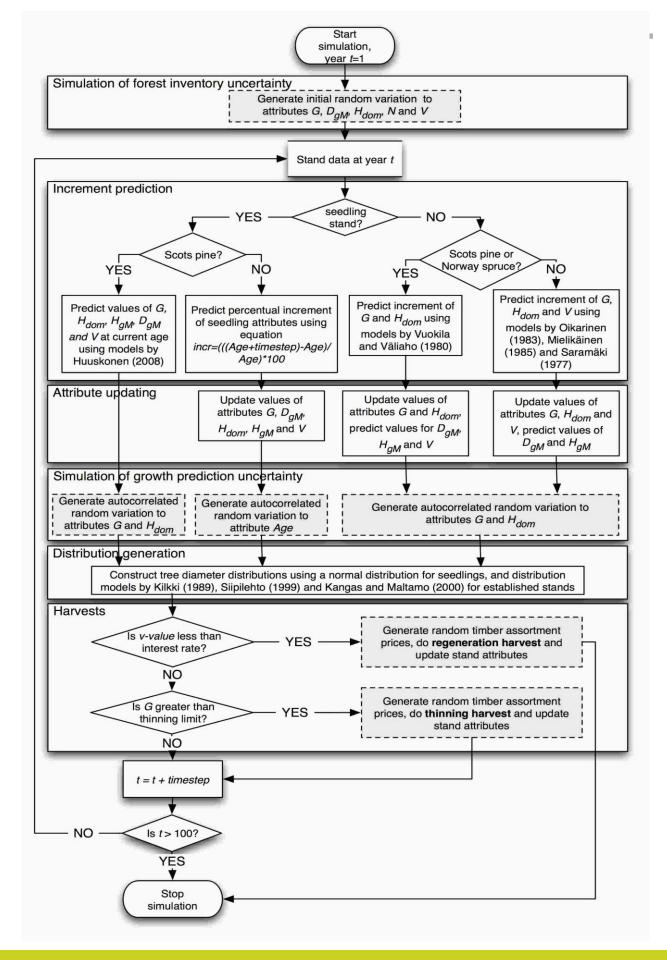
- η speed of reversion
- σ level of annual variation
- dz increment of the wiener process
 - \overline{p} long-run average price

Correlations: Cholesky decomposition of the variance-covariance matrix

Random variation in forest inventory data

- Including measurement and sampling error
- two datasets:
 - (1) Field inventory of stand characteristics based on measurement of sample plots
 - (2) Aerial Laser scanning tecniques
- Both datasets: reference plot measurements

 –> construct true values equations of forest properties
 –> generate random variation in initial stand state by comparing true values and observations
- Measured characteristics:
 - . mean diameter (DgM),
 - . mean height (HgM),
 - . basal area (G),
 - . number of stems per hectare (N)
 - . total volume (V)


Simulation of random growth prediction errors

- whole stand models
- include random variation component in growth predictions
- two sources of random variation:
 - (1) inter stand error u

(2) intra stand variation e_t (annual variations in weather)

Total random error:

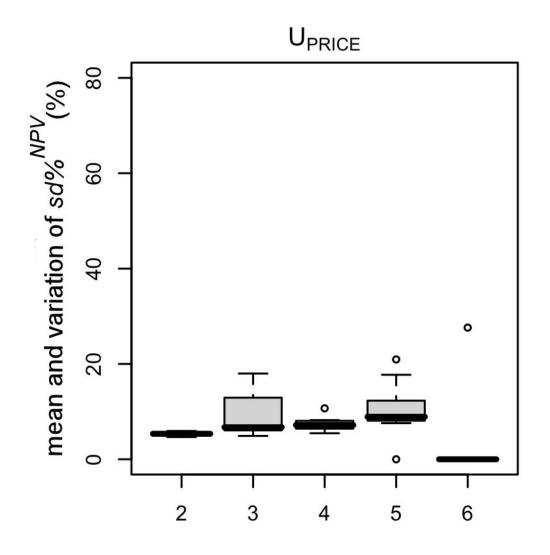
The prediction errors for different attributes (H_{dom}, G, etc) between neighbouring stands correlate -> samling from multinormal distribution using the Cholesky decomposition and variance-covariance matrix

3 RESULTS

ACTIVE SOURCES OF UNCERTAINTY				AVERAGES	
U _{PRICE}	U _{FIELD}	U _{ALS}	U _{GROWTH}	bias% ^{NP}	$V sd\%^{NPV}$
0				-6.1	8.2
	0			-6.8	28.8
		0		1.7	26.5
			0	-9.5	33.2
0	0			-9.1	29
0		0		-1	27.4
0			0	-5.7	34.9
	0		0	-12.5	46.9
		0	0	-2.1	46.5
0	0		0	-9.2	47.4
0		0	0	0.1	46.5

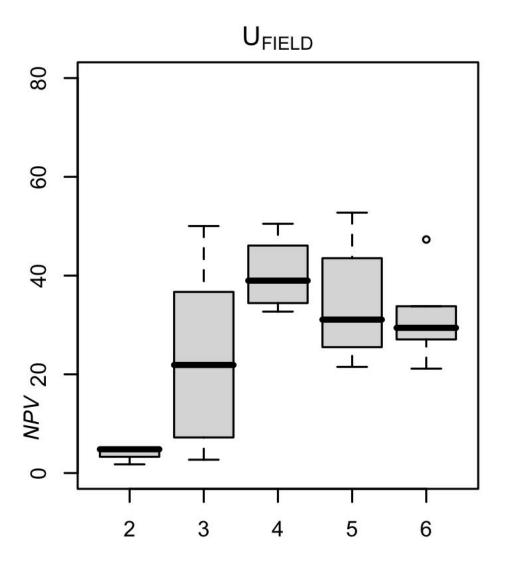
U_{PRICE} price uncertainty

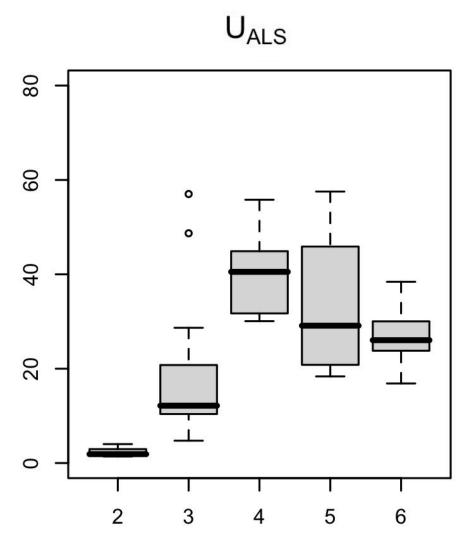
U_{FIELD} inventory data uncertainty, field measurements


U_{ALS} inventory data uncertainty, aerial laser scanning techniques

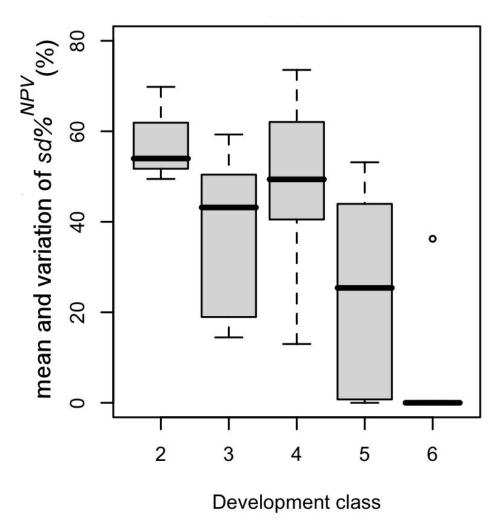
 U_{GROWTH} uncertain growth predictions

$$bias\%_{i}^{NPV} = (nean_{i}^{NPV} - npv_{i}^{REF}) npv_{i}^{REF} \times 100$$


$$sd\%_{i}^{NPV} = \sqrt{\sum_{l=1}^{100} \left(\left(\frac{npv_{il} - mean_{i}^{NPV}}{mean_{i}^{NPV}} \right) \times 100 \right)^{2} \times \frac{1}{100}}$$


- 2 young seedling stand
- 3 advanced seedling stand
- 4 young seedling stand
- 5 advanced thinning stand
- 6 mature stand

- 2 young seedling stand
- 3 advanced seedling stand
- 4 young seedling stand
- 5 advanced thinning stand
- 6 mature stand



Development class

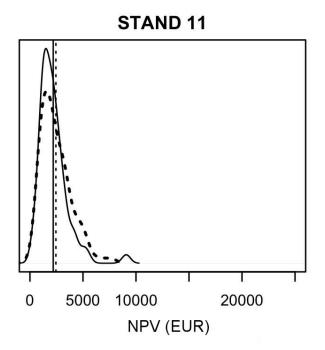
- 2 young seedling stand
- 3 advanced seedling stand
- 4 young seedling stand
- 5 advanced thinning stand
- 6 mature stand

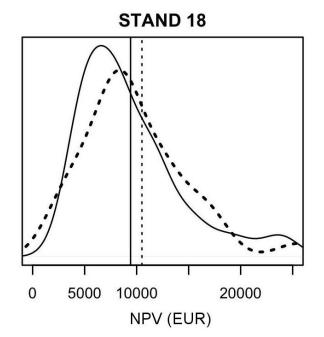
U_{GROWTH}

- 2 young seedling stand
- 3 advanced seedling stand
- 4 young seedling stand
- 5 advanced thinning stand
- 6 mature stand

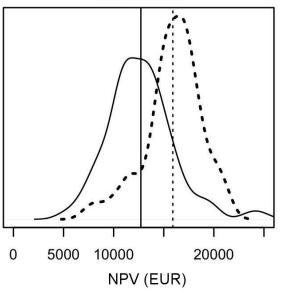
U_{PRICE} + U_{ALS} + U_{GROWTH}

Development class


- 2 young seedling stand
- 3 advanced seedling stand
- 4 young seedling stand
- 5 advanced thinning stand
- 6 mature stand


PROBABILITY DISTRIBUTIONS FOR NPV:

Young seedling stand:


Young thinning stand:

Mature stand:

STAND 23

4 CONCLUSIONS

- All three sources of uncertainty all had significant effects on the probability distribution of the net present value of the stand

- The relative standard deviations (3% rate of interest) 8% for stochastic timber price 29% for errors in stand-wise field inventory data, 26% for errors in airborne laser-scanning data 33% for errors in growth projection models
- All three sources: 47.4% average standard deviation
- outcome: find out the most important source of uncertainty to focus
- Errors in the growth projections and the quality of inventory data contributed more than timber price
 -> assumption that forestry industry maintains its competitiveness in the long run
- implications to optimization: variations in NPV due to uncertainties are much higher than the differences between two near optimal solutions