

Structural acclimation and photosynthesis of tree canopies in changing climate

Mikko Peltoniemi, Remko Duursma, Belinda Medlyn Tours, France, 22.5.2012 Tackling Climate Change: The Contribution of Forest Scientific Knowledge

Introduction

- Today's plant species have a long evolutionary history
 - Selection has favoured individuals with high fitness
 - One can assume that plants operate and structured optimally (under given environment conditions)...or at least they are close to local fitness optimum.
- Can we learn something about if we assume a plant is optimal?
 - Reason and consequences for observed structures
 - Deviations from optimum may reveal us something new
 - Upper limit for the effects of structural acclimation under climate change
 - Model simplification

Example of optimal assumption

- Bigleaf-models assume *N* follows light distribution.
 - N is bound in chlorophyl; sets the max. rate of photosynthesis
- Empirical canopy N gradient is much flatter than optimal. IS THERE A PROBLEM?

Intro + AIMS

- In real plants, photosynthesis (A) is linked to transpiration (E)
 - High A leaves should be serviced by more water
 - Implies higher hydraulic (root to leaf) conductance (K)
 - High K is generated by allocating carbon resources to xylem growth
- We asked what explains measured flat N?
 - Can hydraulic contraints explain it?
 - What would be the co-optimal distribution of N and K?
 - How the co-optimal N and K distributions change with increasing CO₂?

MATERIALS AND METHODS

- We built a simple canopy model linking leaflevel photosynthesis to hydraulics
- In each leaf, A and E are predicted by solving 5 equation set, including
 - Farquhar model
 - $-g_s = f(\text{leaf water potential})$ (Tuzet et al, 2003)
 - Hydraulic equation with soil-to-leaf conductance ,
 K

Co-optimal canopy model, 'KNopt'

• Model has two leaves i

Maximize ΣA_i of plant to get optimal K_i and N_i TOTAL K AND N CONSTRAINED.

```
    Full canopy
solution multiple leaf
pairs compared under
different /
```

Can hydraulic structure influer

raction of value at top

- Yes:
 - More N in shade if
 sun leaf gets too little
 water (K are equal)
 - Even more N in shade
 if K follows path length⁻¹

Cumulative LAI

 When N and K are co-(follows light distribution

So, what is co-optimal K?

Discussion

- Sub-optimal distribution of xylem conductivity influences allocation of photosynthetic resources in plant canopies
 - Provides a new explanation to flat N gradients in canopies
 - Total amounts of *K* and *N* irrelevant for their cooptimal allocation
 - In the co-optimal case, both K and N follow light
- Support for bigleaf-models of photosynthesis, given *K* is not constrained in plants.

Discussion

- So, are plants (co-)optimal?
 - Both higher N and K are frequently measured in sun
- In reality, there are
 - other constraints operating; e.g. growth related
 - differential costs and co-benefits in plant canopies
 - Further explanations to flat *N* can be seeked from costs and other constraints operating in a plant.
- Focus on constraints and deviations from optimum

THANKS

