







## Disturbance-driven northwards spread of European beech in Southern Sweden

Andreas Bolte<sup>1,3</sup>, Lutz Hilbrig<sup>1</sup>, Britt M. Grundmann<sup>2</sup>, Andreas Roloff<sup>2</sup>, Jörg Brunet<sup>4</sup>

<sup>1</sup>vTl, Institute of Forest Ecology and Forest Inventory, Eberswalde (Germany)

<sup>2</sup>TU Dresden, Institute of Forest Botany and Forest Zoology, Tharandt (Germany)

<sup>3</sup>Göttingen University, Silviculture and Forest Ecology of the temperate Zones, Göttingen (Germany)

<sup>4</sup>SLU, Southern Swedish Forest Reserach Centre, Alnarp (Sweden)











#### **Outline**







Site and methods



- Disturbance effects on European beech and competing Norway spruce
- Effects on spruce-beech competition dynamics
- Theory of (future) beech superiority











## Climate change – implications for southern Sweden





### Climate change







Change of T and P in Scandinavia (1991-2000 to 1961-1990):

T +0.8°C, P +6%, mostly in winter (Räisänen & Alexandersson 2003),

Projection 2100: T +4°C, P +11% (Lind & Kjellström 2008)

Projections Europe 2100 (IPCC, 2007):

- Temperature: +2.0°C to +6.2°C (min. SRES B2 to max. A2 scenario)
- More extremes: more frequent and intensive <u>heat waves</u> and <u>droughts</u>, increase of <u>storm events (northern Europe)</u>



#### Source:

IPCC., 2007 (4tf Assessment IPCC report)





#### Storm risk









Northern central Europe (incl. southern Sweden) are often affected by storm.

An increase of extreme wind intensity for this region is projected (*Leckebusch et al., 2006*).

Source: Leckebusch et al., 2006

Standardized cyclone track density

d)



c)



### European beech range





Source: Bolte et al., 2007, modified



### Research hypotheses







- The projected northward extension of the beech is the result of:
  - Higher tolerance to and/or resilience after (CC driven) disturbances compared to spruce.
  - increased competitive vigour and higher growth performance relative to spruce
- What could be the main causes for beech range shift in future?
- What driving processes are responsible?











#### Site and methods





## Site Siggaboda, about 100 years untouched









|                                 | Siggaboda                                                              |  |  |
|---------------------------------|------------------------------------------------------------------------|--|--|
| Location                        | Kronobergs län,<br>10 km SEHärlunda                                    |  |  |
| Altitude (m a. s. l.)           | 140-150                                                                |  |  |
| Slope orientation               | variable                                                               |  |  |
| Mean annual T (C)               | 6                                                                      |  |  |
| Mean T. May-Sep<br>(C)          | 12                                                                     |  |  |
| T. range year (C)               | 17                                                                     |  |  |
| Prec. (mm/yr)                   | 700                                                                    |  |  |
| Bedrock                         | Gneissic granite                                                       |  |  |
| Substrate                       | Silty sand                                                             |  |  |
| Soil type                       | Dystric Cambisol                                                       |  |  |
| Moisture status                 | High (partly boggy)                                                    |  |  |
| Nutrition status                | Low to moderate                                                        |  |  |
| Stand                           | Beech up to 230 yrs.,<br>Spruce up to 210 yrs.<br>(+nat. regeneration) |  |  |
| Proportion spruce and beech (%) | 60/40                                                                  |  |  |





#### 1000 years of forest history at Siggaboda



















Photo: Andreas Bolte

#### Stand structure recordings (2004 – 2011)







#### In 2004:

- Permanent marking of a grid
- Stem position recording and dbh measurements of each tree (dbh >7cm)
- Height recordings (crown base, height of max. crown width and tree height)

#### In 2005:

- **Crown mapping (8 lateral points)**
- **Storm damage recordings**
- Tree coring and dendroecological analyses

#### In 2007 and 2009:

**Recording of biotic damages** (bark beetle impact)

#### In 2011:

Second stand recording with stem position, dbh and heights (dbh > 7cm)



Source: Bolte et al., non published













# Disturbance effects on European beech and competing Norway spruce





### Siggaboda 2004 (Study start)











**Photo: Andreas Bolte** 







#### The 'Gudrun' storm (8-9/01/2005)

- Maximum wind velocity: up to 42 m/s (Blekinge/S),
- 341,000 households without electricity
- 160,000 ha damaged forests, 75 mill. m³ wood volume
- Damage: 2,25 billion €

#### **Mean wind velocity**

#### 17.5 20 22.5 27.5 30.0 32.5 35 37.5 35 37.5 35 37.5 35 37.5

37.5

## Mean wind-thrown wood volume





TECHNISCHE UNIVERSITÄT DRESDEN

Source: SMHI, 2005

20.0 17.5 15.0

#### Siggaboda 2005, storm damages









**Photo: Marcus Kühling** 

Thrown spruce group



**Photo: Andreas Bolte** 

Secondarily damaged beech (by thrown spruce)





# Summer drought 2006







Exceptional heat wave June/July 2006 (also warm autumn)

- Water deficit in June/July 2006
- + remaining breeding material for bark beetles



Source: Bolte et al., 2010





#### Siggaboda 2007 – after bark beetle attacks









**Photo: Andreas Bolte** 

Standing dead spruce (height ca. 40 m)



**Photo: Andreas Bolte** 

Dead spruce overstorey, living beech understorey





## Siggaboda 2009/2011 – after bark beetle attacks









**Photo: Andreas Bolte** 

Spruce overstorey nearly completely dead



**Photo: Andreas Bolte** 

Light-demanding herbs on the forest floor (Epilobium angustifolium)





### Comparison 2004 to 2011



High resistance to storm (Storm damage, Spruce: only 11% BA loss)

Low resistance of spruce towards bark beetle attacks (75% BA loss)







Source: Bolte et al., in prep.

#### **Growing stock dynamics**









- ☐ Lying dead wood (all species)
- □ Norway spruce (standing, living)
- □ European beech (standing, living)
- Other species (standing, living)











## Effects on the spruce-beech competition dynamics





#### Diameter increment (tree cores)









Source: Bolte et al., 2010

| Site      | Species | Diameter increment % of long-term mean |           | Increment ratio spruce/beech (%) |           |
|-----------|---------|----------------------------------------|-----------|----------------------------------|-----------|
|           |         | 1894-1949                              | 1950-2005 | 1894-1949                        | 1950-2005 |
| Siggaboda | Beech   | 88.1                                   | 111.7     |                                  |           |
|           | Spruce  | 100.7                                  | 99.3      | 282.4                            | 219.6     |
| Tolseboda | Beech   | 106.2                                  | 93.9      |                                  |           |
|           | Spruce  | 109.0                                  | 91.1      | 206.4                            | 195.1     |

Source: Grundmann et al., 2011





#### Higher resilience ability of beech









In[-iCI], no unit

Source: Bolte et al., in prep.





# Theory of spruce decline and (future) beech superiority













### Thanks for your attention and...







Financial support:

Deutsche Forschungsgemeinschaft (DFG)

Erik and Ebba Larssons with

Thure Rignells Foundation, Sweden

Co-operation: Sustainable m

Sustainable management in hardwood forest, SLU Alnarp

Assistance (Univ. Göttingen, vTI, SLU):
Heiko Rubbert, Marcus Kühling, Dr. Tomasz Czajkowski,
Dr. Thomas Kompa, Dr. Lars Drössler

Advice and technical support:
 Prof. Dr. Magnus Löf, SLU Alnarp
 Dr. Peter Meyer (NWFVA Göttingen)











#### Literature







- Bolte, A.; Czajkowski, T.; Kompa, T. (2007): The north-eastern distribution area of European beech

   a review. Forestry 80, 4: 413-429.
- Bolte, A.; Hilbrig, L.; Grundmann, B.; Kampf, F.; Brunet, J.; Roloff, A. (2010): Climate change impacts on stand structure and competitive interactions in a Southern Swedish spruce-beech forest. Eur. J. Forest Res. 129, 3: 261-276.
- Grundmann, B.M.; Bolte, A.; Bonn, S.; Roloff, A. (2011): Impact of climatic variation on growth of *Fagus sylvatica* and *Picea abies* in southern Sweden. Scand. J. For. Res. 26, Suppl. 11: 64-71.
- IPCC [Intergovernmental Panel on Climate Change] (2007): Climate Change 2007: The physical science basis. Summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: WMO.
- Leckebusch, G.C.; Koffi, B.; Ulbrich, U.; Pinto, J.G.; Spangehl, T.; Zacharias, S. (2006): Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Research 31: 59-74.
- Niklasson, M.; Lindbladh, M.; Björkman, L. (2002): A long-term record of *Quercus* decline, logging and fires in a southern Swedish *Fagus-Picea* forest. J. Veg. Sci. 13: 765-774.
- SMHI [Sveriges Meteorologiska och Hydrologiska Institut] (2005): Januaristormen 2005. Faktablad nr. 25, SMHI, Nörrköping (in Swedish).



