Opportunities and constraints of close-to-nature sylviculture as an adaptation strategy to climate change

Conference Tours 21-24 May 2012

Peter Brang*

J. Bo Larsen, Peter Spathelf, Jürgen Bauhus, Andrej Boncina, Lars Drössler, Carlos García-Güemes, Caroline Heiri, Gary Kerr, Manfred Lexer, Bill Mason, Frits Mohren, Urs Mühlethaler, Susanna Nocentini, Miroslav Svoboda

* Swiss Federal Institute of Forest, Snow and Landscape Research WSL

3 CNS types: size and life span of patches

Life span of patches [a]

Approach

Adaptation **principles** (strategic options)

Principles of CNS

Silvicultural **tools** useful for adaptation Silvicultural tools used in CNS

Approach

Adaptation **Principles** principles of CNS (strategic options) no overlap? Silvicultural tools Silvicultural tools overlap? used in CNS useful for adaptation

CNS principles

- promotion of the natural or siteadapted tree species composition, often based on the assumed potential natural vegetation
- promotion of mixed forests
- promotion of diverse vertical and horizontal stand structures
- promotion of **natural regeneration**
- silvicultural practices focus on individual trees
- no clear-cutting

Importance of the principles varies among CNS types

Adaptation principles

- = strategic options for increasing the adaptive capacity* of forests, and avoid/reduce loss of ecosystem services
- 1. Increase tree species richness
- 2. Increase structural diversity
- 3. Maintain & increase genetic variation within tree species
- 4. Increase resistance of individual trees to biotic and abiotic stress
- 5. Replace high-risk stands
- 6. Keep growing stocks low
- 7. Provide a forest microclimate

Example:

Justification of ... increased species richness

- 1. Disturbance or stress are less likely to affect all trees (higher resistance)
- 2. Species-rich stands are more resilient after disturbance (faster recovery)
- 3. Increased redundancy of ecological functioning
- 4. Increase of future management options

Seven adaptation principles

- = strategic options for increasing the adaptive capacity* of forests, and avoid/reduce loss of ecosystem services
- 1. Increase tree species richness
- 2. Increase structural diversity
- 3. Maintain & increase genetic variation within tree species
- 4. Increase resistance of individual trees to biotic and abiotic stress
- 5. Replace high-risk stands
- 6. Keep growing stocks low
- 7. Provide a forest microclimate

Silvicultural tools to implement the adaptation principles

- Single-tree selection cutting (incl. conversion cuts)
- Diverse regeneration cuts
- Long regeneration periods
- Maintenance of seed trees
- Natural regeneration
- Artificial regeneration
- Mixing provenances of the same species
- Tending
- Thinning
- Reducing impact of felling operations
- Reduced rotation length
- Control of ungulates

Silvicultural tools to implement the adaptation principles

- Single-tree selection cutting (incl. conversion cuts)
- Diverse regeneration cuts
- Long regeneration periods
- Maintenance of seed trees
- Natural regeneration
- Artificial regeneration
- Mixing provenances of the same species
- Tending
- Thinning
- Reducing impact of felling operations
- Reduced rotation length
- Control of ungulates

- → No new tools but new importance of existing tools
- \rightarrow Which tools are applied in CNS?

Which *adaptation principles* are in **agreement** with CNS, which ones not, which ones partly?

Principle	Single-tree selection	Group selection	Uniform shelterwood
Increase tree species richness	$\overline{\mathbf{S}}$	\odot	:
Increase structural diversity	\odot	\odot	8
Maintain & increase genetic variation within tree species	:	٢	
Increase individual resistance to biotic and abiotic stressors	0	:	
Replace high-risk stands	$\overline{\mathbf{S}}$	\odot	(
Keep growing stocks low		:	\odot
Provide a forest microclimate	\odot		\odot

Which *adaptation principles* are in **agreement** with CNS, which ones not, which ones partly?

Principle	Single-tree selection	Group selection	Uniform shelterwood
Increase tree species richness	$\overline{\mathbf{S}}$	Ü	÷
Increase structural diversity	\bigcirc	\odot	Ö
Maintain & increase genetic variation within tree species		٢	:
Increase individual resistance to biotic and abiotic stressors	0	÷	
Replace high-risk stands	$\overline{\mathbf{i}}$) ©	÷
Keep growing stocks low	<u></u>	÷	\odot
Provide a forest microclimate	\odot	<u></u>	\odot

Small gaps hinder the establishment of light-demanding species, no planting

 \rightarrow Patch cuts are avoided

Which *adaptation principles* are in **agreement** with CNS, which ones not, which ones partly?

Principle	Single-tree selection	Group selection	Uniform shelterwood
Increase tree species richness	$\overline{\mathbf{x}}$	\odot	÷
Increase structural diversity	\odot	\odot	8
Maintain & increase genetic variation within tree species	:	3	:
Increase individual resistance to biotic and abiotic stressors	0	:	
Replace high-risk stands	$\overline{\mathbf{S}}$	\odot	:
Keep growing stocks low	÷	:	\odot
Provide a forest microclimate	\odot		\odot

→ Match depends on CNS type

→ Smallest agreement in traditional single-tree selection, highest in group selection

Opportunities and constraints of CNS

- Highly motivated practicioners
- CNS includes many elements facilitating adaptation to climate change
- ... but no CNS type is a general remedy to cope with it
- More flexibility in implementation

Conclusions

- Several CC adaptation principles are implemented in CNS
- CNS has deficiencies in the adaptation principles
 - Increase tree species richness
 - Maintain and increase genetic variation
 - Replace high-risk stands
- CNS should make increased use of
 - a large variation in cutting layouts to promote tree species richness
 - non-native species and non-local provenances

