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Mid-latitude carbon-water coupling

Overestimation in the sensitivity of soil respiration to
climate change throughout the mid-latitudes
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Why just the mid-latitudes?

Scientifically speaking:

Extreme climates
can force a trend in
global observations,
that simply isn’t
relevant to the

middle-ground.

: %
- g a
= o B
: g
- E
g = x
$ g
E-1
: B

(=]

= ] o 10 20 30

Temperature oC Warmer + wetter =

ﬁ more respiration

VRIJE
UNIVERSITEIT
AMSTERDAM



Why just the mid-latitudes?

Scientifically speaking:

Extreme climates
can force a trend in
global observations,
that simply isn’t
relevant to the
middle-ground.

The mid-latitudes are
a jumble of climate
types, making them a
Iinteresting nexus of
study
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Why just the mid-latitudes?

Practically speaking:
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The Carbon Cycle

Enormous flux of CO2 in biosphere ‘breathing’; annually,

an order of magnitude larger than all anthropogenic
emissions (Field & Raupach, 2004; Boden et al., 2010)
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Stores of carbon in the soils are HUGE
So we really need to know how changes in climate may
affect future storage, emissions and sequestration
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Modelling respiration
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Respiration is
modelled very,
very simply in
] climate models
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Interestingly,
many of the
independent field

'

Respiration rate relative to fitted valus at 10°C
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respiration snow a 0 10 20 30 40
near-exponentlal Table 1 Land models and soil carbon representations used in coupled climate models (Friedlingstein et al. 2006)
I‘elationship When Land carbon Coupled model Soil carbon model structure References
model
pIOtted agalnSt TRIFFID HadCM3LC, Single C pool with moisture and 0y temperature responses Cox (2001)
UVie-2.7
temperature SLAVE IPSL-CM2C Two litter pools, fast and slow seil C pools based on CENTURY  Friedlingstein et al.
medel with moeisture and ), temperature responses (1995)
ORCHIDEE- IPSL-CM4-LOOP  Four litter pools; fast, slow, passive soil C pools with moisture and  Krinner et al. (2005)
STOMATE (10 temperature Tesponses
LSM-CASA C8M-1 Nine soil C pools with soil moisture and transpiration control and  Potter et al. (1993)
(fclimate temperature responses
JSBACH- MPI Two soil C pools with moisture and (2, temperature responses Knorr (2000)
BETHY
: IBIS LNLL Litter and soil C pools with soil water-filled pore space controls  Foley et al. (1996)
- ~ and Arrhenius temperature responses
e Sim-CYCLE FRCGC Two soil C pools with soil moisture and Arrhenius temperature  Ito and Oikawa (2002)
“ . TCSponses
P VEGAS UMD Three seil C pools with different ¢ temperature responses Zeng et al. (2005)
AN Cas LPT CLIMBER2-LP],  Above and belowground litter pools; 2 soil C pools with moeisture  Sitch et al. (2003)
e TN BERN-CC and modified @,y temperature responses
{ T ‘ CLM-CN- CESM Coarse woody debris, 3 litter, and 3 soil C pools that cascade with Thornton and
& o 5 Biome-BGC moisture and 2, temperature responses Rosenbloom (2005)
o e in line with Arrhenius kinetics of decomposition and experimental
n=342 s+ Er observations (Davidson et al, 1998; Tuomi et al., 2008)
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Modelling respiration

Hypothesis

Why?

Assumption

[—

SOC

decomposition is
temperature
sensitive

Simply, decomposition is an enzyme-
mediated reaction, and thus the rate-limiting
step is temperature (to a point...). Enzyme
kinetics works the same everywhere- so
there is a global Q10 (Mahecha et al. 2010)

All SOC is equally

sensitive to
temperature in all soil
types in all regions
under all climate zones
on Earth
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Can we see this at the extra-site scale?
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Can we see the respiration-temperature
relationship at the extra-site scale?

No.
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Can we see the respiration-temperature
relationship at the extra-site scale?

Soil Respiration g C m-2 yr-1
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Can we see the respiration-temperature
relationship at the extra-site scale?
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So the temperature sensitivity can only be
seen when there is sufficient moisture?
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In the mid-
latitudes, there 1s
no obvious
Increase in
annual
respiration with
concomitant
Increases in
temperature and
precipitation

VRIJE
» UNIVERSITEIT
K% AMSTERDAM



Modelling respiration

Hypothesis

Why?

Assumption

[—

SOC

decomposition is
temperature
sensitive

Simply, decomposition is an enzyme-
mediated reaction, and thus the rate-limiting
step is temperature (to a point...). Enzyme
kinetics works the same everywhere- so
there is a global Q10 (Mahecha et al. 2010)

All SOC is equally

sensitive to
temperature in all soil
types in all regions
under all climate zones
on Earth
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Maybe mean annual precipitation is a useless
proxy for bio-available soil moisture.

Unfortunately,
this sort of data
1s very sparse in
the Bond-

Lamberty dataset
Optimum MAT MAP PET MAP/PET
6.9 220 1817 0.1210787
6.9 220 1817  0.1210787
15.5 370 BOO 0.4625
15.5 370 BOO 0.4625
: 15.5 370 BOO 0.4625
Potential Oxygen 0.81 435 21051  0.0206641
enzyme ° 0.5 435 21051 0.0206641
deficit 0.3 435 21051 D0.0206641
ivi 4.9 470 1600 0.29375
activity Water 4.9 470 1600 0.29375
15 500 725 0.68965517
i 15 500 700 0.71428571
deficit 15 500 700 0.71428571
9.8 750 670 1.11940299
5.5 Ba2 480 1.75416667
12.5 973 790 1.23164557
12.5 973 790 1.23164557
16.8 1577 990 1.5829292%
16.8 1577 990 1.5829292%
16.8 1577 990 1.58292929%
16.8 1577 990 1.5829292%

Precipitation / potential evapotranspiration
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Maybe mean annual precipitation is a useless
proxy for bio-available soil moisture.

MODIS derived estimates of precipitation / potential evapotranspiration
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A more accurate proxy?

Total Sail Respiration g C m-2
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Why can’t we see common site observations
at the extra-site scale?*

1. Other drivers cloud
climate signal

> I[mmense site
heterogeneity

> Lack of inter-site
consistency

”Site”

That respiration is temperature dependent may be de jure at the site scale, but
de facto up-scaling to represent global phenomena may not not defensible

*We should, as this is the scale that climate models aim to replicate
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Why can’t we see common site observations
at the extra-site scale?*

2, Attenuation of response

Even short-term experimental studies
see attenuation of response
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Acclimation of ecosystem C0,
exchange in the Alaskan
Arctic in response to

decadal climate warming
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*We should, as this is the scale that climate models aim to replicate
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Modelling respiration

Hypothesis

Why?

Assumption

[—

SOC

decomposition is
temperature
sensitive

Simply, decomposition is an enzyme-
mediated reaction, and thus the rate-limiting
step is temperature (to a point...). Enzyme
kinetics works the same everywhere- so
there is a global Q10 (Mahecha et al. 2010)

All SOC is equally

sensitive to
temperature in all soil
types in all regions
under all climate zones
on Earth
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Net Ecosystem Productivity

o Why would mean annual
L Netpimay Productiviy precipitation show more
Gross PrimaryPoductivity relation to respiration
\y P/ than actual precipitation

observations?

A product of how
respiration is
measured in the
field

Heterotrophic Respiration

NPP = GPP - Ra

NEP = NPP - Rh

Net Ecosystem Productivity =
the summation of all fluxes
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We can see this in the data
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NPP = GPP - Ra

NEP = NPP - Rh

Excellent
correlation
between GPP and
total ecosystem
respiration: but
this 1s hardly
surprising as
autotrophic
respiration is
primary
productivity
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We can see this in the data
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NPP = GPP - Ra

NEP = NPP - Rh

Ruehr & Buchmann
[2009] presented a
strong correlation
between
photosynthetic active
radiation (and thus
GPP) and Ra

We find the Ra component of Rs
to be 42% % 2.35 (where n = 255)
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De-coupling of Rh and Ra respiration components?

Met Ecosystem Productivity
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Such an absence is
conspicuous, and
points to the relative
importance of Rh in
ultimately determining
the carbon balance; if
GPP and Rh were
governed by the same
drivers, as GPP and Ra
are, then one would
expect NEP to be in
steady-state with soil
respiration and GPP
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climatic change

NEP

Rs

climatic change

In order to achieve an increase in NEP with increases in GPP the drivers of soil respiration
must be different, or at least have a different sensitivity, to those that drive GPP. If the
responses of GPP and Rs were equal, there would be no change in the net uptake/loss of
carbon as GPP changes. Likewise, the decoupling of total soil respiration with NEP in the
presence of a strong correlation between GPP and NEP points to a certain degree of
independence in the response of these two processes to the same stimuli, otherwise Rs
would also correlate with NEP; as autotrophic respiration is a direct corollary of
production, it is deduced that the heterotrophic component of Rs dictates the scatter
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Is this OK? }:t)rlsgglrllsent that
NPP = GPP - Ra

determines how
NEP varies with

NEP = NPP - Rh GPP

We model respiration as the temperature sensitive decomposition of recent
and old litterfall- but if they respond to different drivers, or at least with a
different sensitivity, then what can this tell us about resolving the balance
of the terrestrial carbon cycle?
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“..impossible to measure actual temperature
response of R, and that a range of
confounding effects creates the observed
apparent temperature relations reported in
the literature” Subke & Bahn, 2010.
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Implications

Modelling 101: “Statistical models contain no
understanding of the processes involved, so it
is unlikely to be accurate if used to predict
results well outside the conditions for which it
was developed” Smith & Smith, 20009.
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Which is exactly the purpose of climate models

Rlespiration rate relative 1o fitted value at 10°C

ignores the actual underlying mechanisms,
e.g.Ql0=2 such as substrate supply and quality or
microbial competition and survivorship, and as
such the true response of respiration to
changes in climate cannot be mechanistically
predicted [Subke & Bahn, 2010].
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Modelling respiration

Analogous to the gradual

We are interested in the exudation of carbon to the
long-term balance between atmosphere from burning
the total production and fossil fuels
respiration, as this
determines how much We need to know the long-
carbon soils will contain,
, . term response of the
and how much will be in ‘background’ flux of ‘old’
the atmosphere carbon due to changes in

climate

Parameterising models with
‘soil respiration’ from a few
years of measurement can
not tell us this temporally or
spatially-boundary
conditions
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Modelling respiration

Despite the enormity of both fluxes, primary productivity draws the
most research attention, allowing vegetation component of land C
models to develop rapidly (Foley et al., 1996; Sitch et al., 2008)

Therefore: relatively poor understanding of
soil heterotrophic processes relative to plant
photosynthesis (Todd-Brown et al. 2011)

Very little change in
representation of
decomposition processes.
Models have not kept
pace with rapid advances
in the ecology of
microbial decomposition
(Chapin et al., 2009).
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