Tackling climate change. Tours, France. 21 - May 2012

Assessing impacts of climate change in forested landscape planning with advanced decision support tools. A case study in Portugal

Jordi Garcia-Gonzalo, José G. Borges, Margarida Tomé, João Palma, Wesley Hilebrand

> Instituto Superior de Agronomia Universidade Técnica de Lisboa (Portugal)

Instituto Superior de Agronomia Universidade Técnica de Lisboa

Technical University of Lisbon

Forest Ecosystem Management under Global Change

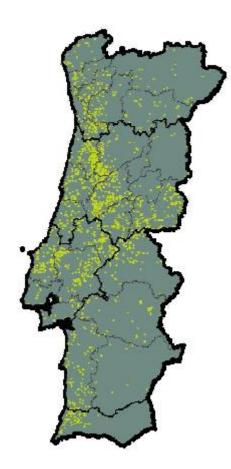
Outline

- I. Background
- II. Aims

III. Material and Methods

- © A. Decision Support System
- B. Case Study
 - Study Area
 - Prescriptions used
 - Management Objectives (mathematical model)
- © III.D. Scheme for modelling formulation and solving
- IV. Preliminary Results
- V. Discussion

Forest Ecosystem Management under Global Change


Technical University of Lisbon

I. BACKGROUND

- The future climate is expected to change substantially due to the increase of green house gases in the atmosphere, especially CO₂.
- In Portugal, the annual mean temperature (T) is expected to increase by 2-7°C together with a decrease of precipitation by 20-30% by 2100.
- This may impact forest growth, timber yield and accumulation of carbon (C) in our forests.

Forest Ecosystem Management under Global Change

I.BACKGROUND

- Eucalyptus represents about 23% of the forest cover in Portugal (IFN,2005).
- Main raw material for pulppaper industry

 Important for the economy (e.g. pulp and paper industry)

G Forest Ecosystem Management under Global Change

Technical University of Lisbon

What can we do with climate change

- Ignore it and continue doing business as usual?
- Then we will achieve suboptimal solutions or bad solutions (Thorsen and Helles 1998, Pukkala 1998)

FUTURE ???

Technical University of Lisbon

FOFCHANGE Forest Ecosystem Management under Global Change

II. AIMS

- Develop a process-based model, Glob3PG, and integrate it together with optimization techniques.
- Analyse the effect of changing climatic conditions on the production of Eucalyptus plantations.
- Develop a <u>DSS</u> to <u>optimize</u> management plans for Eucalyptus (coppice management) under <u>changing</u> <u>climate conditions</u>.

Should we change management under climate change?

Forest Ecosystem Management under Global Change

Technical University of Lisbon

Why to develp a DSS with OPT techniques and not a simulator?

- What can you do with simulators?
 - Check the outputs from a specified prescription
 - Scenario analysis
 - Answer what if questions...
- What you can not do or would be difficult to do with growth and yield simulators is to answer questions as:
 - What is the optimal plan for a landscape ?
 - Specially when taking into account even-flow of harvests, budget constraints, adjacency constraints...

Forest Ecosystem Management under Global Change

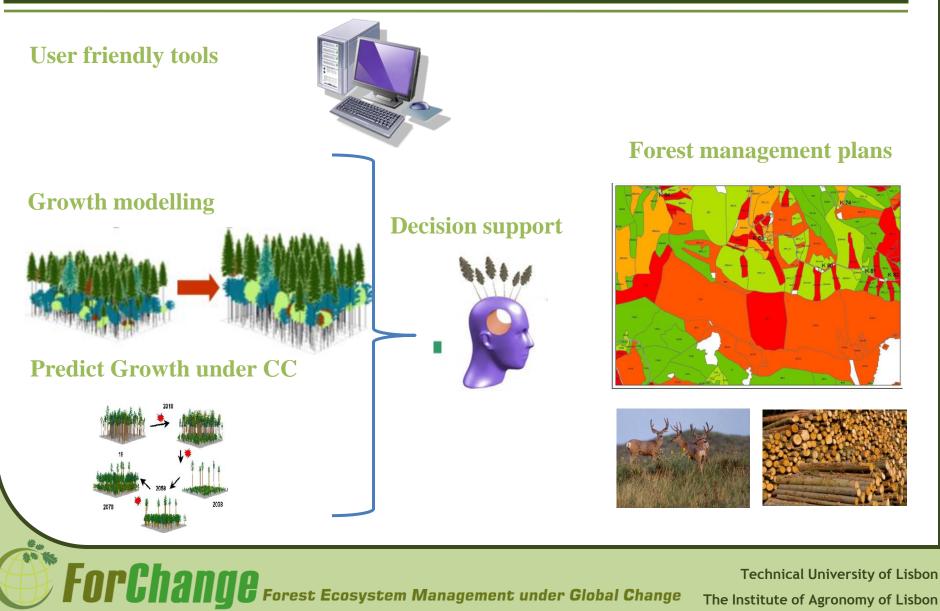
Growth and yield models are key in DSS

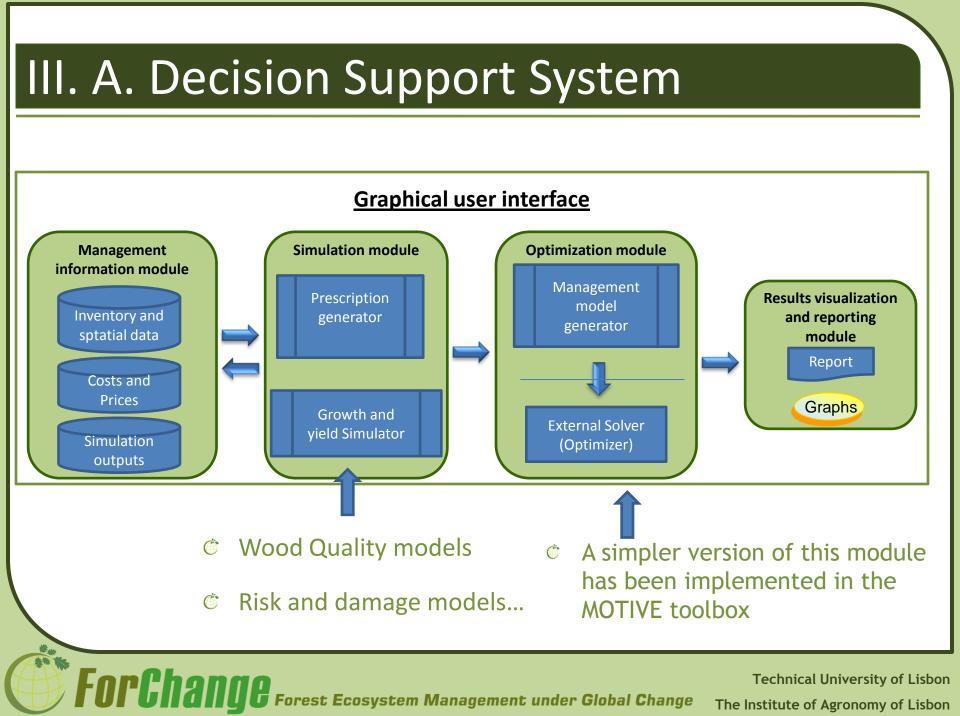
Technical University of Lisbon

Outline

I. Background

🛎 II. Aims


III. Material and Methods


- © A. Decision Support System
- © B. Case Study
 - Study Area
 - Prescriptions used
 - Management objectives
- © III.D. Scheme for modelling formulation and solving
- IV. Results
- V. Discussion

ForChange Forest Ecosystem Management under Global Change

UniteEnsideal@Trealstopperson


III. A. Decision Support System

III. A. GROWTH MODEL

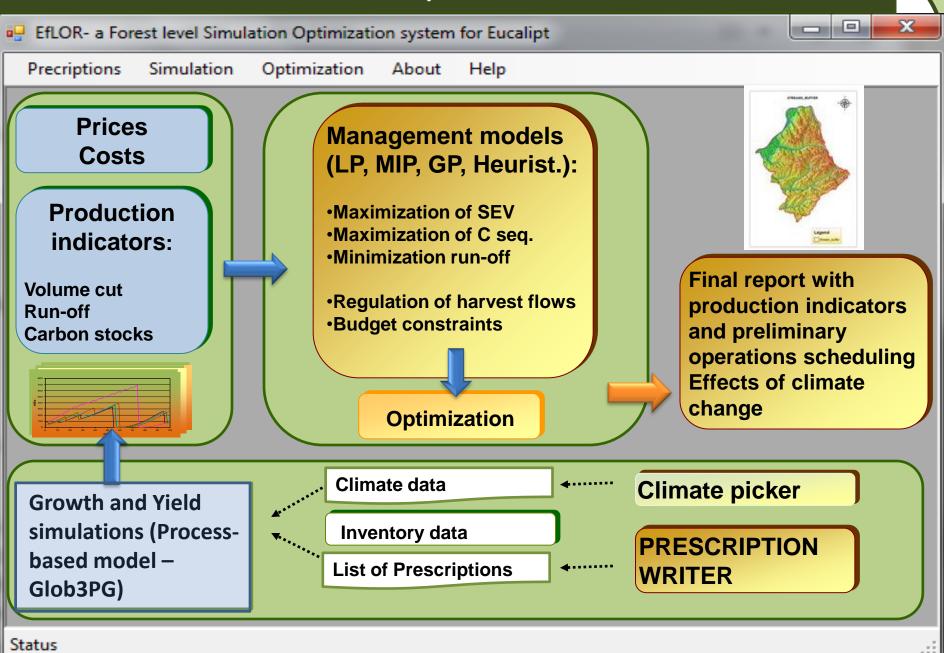
 Methodologies to link 3PG with Globulus were developed having stand variables as linking functions (Tomé et al., 2004):

Technical University of Lisbon

hange Forest Ecosystem Management under Global Change

III. A. GROWTH MODEL

- The result was the GLOB-3PG, a process-based model that:
- 1) is sensitive to climate changes (monthly time step)
- ② 2) can simulate the effect of intensive silvicultural practices such as irrigation, fertilization, initial stand density
- ③ 3) gives detailed output on stand structure: diameter distributions, merchantable volumes to any top diameter


Forest Ecosystem Management under Global Change

gives detailed output on run-off, carbon stocks...

12

Technical University of Lisbon

III. A. DSS – SIMULATION/OPTIMIZATION

13

III. A. DSS - Prescription writer

	ion system for Eucalipt				
Precriptions Simulation Optimization Generate Precriptions Ctrl+ N Import Prescriptions Ctrl+ O Exit	About Help	FMA FMA Details Operations Operations Sequential FMA's Eucalypt Stoiculture Stoil thinning - Nr Shoots per stool: Interval 10 and 12 Image: Stool thinning - Nr Shoots per stool: Interval 10 and 12 Image: Stool thinning - Nr Shoots per stool: Interval 10 and 12 Image: Stool thinning - Nr Shoots per stool: Interval Coppice cycle Image: Stool thinning - Nr Shoots per stool: Interval Image: Stool thinning - Nr Shoots per stool: Between Image: Stool thinning - Nr Shoots per stool: Image: Stool thinning - Nr Shoots per stool: Image: Stool thinning - Nr Shoots per stool: 11 and 14 and 16 0.2 Image: Stool thinning - Nr Shoots per stool: Between Image: Stool thinning - Nr Shoots per stool thinning year 3 Image: Stool thinning - Nr Shoots per stool thinning year 3 Image: Wear Image: Stool thinning - Nr Shoots per stool during prescription Image: Stool thinning - Nr Shoots per stool during prescription Image: Stool thinning - Nr Shoots per stool during prescription Image: Wear Image: Stool thinning - Nr Shoots per stool during prescription Image: Stool thinning - Nr Sho			
Status .::					

- Management rules (Range of possible operations and timing)
- Thus, the prescription writer generates all possible prescriptions for the G&Y model. (this will be improved for efficiency...)

14

Technical University of Lisbon

😈 Forest Ecosystem Management under Global Change 🗌

III. B. Optimization

- User constructs the mathematical model:
- I) Defines the objectives (e.g. Max NPV)
- Defines landscape level constraints (e.g. even flow of harvests)
- ③ 3) Finally it defines the technique used to solve the problem:
 - © Exact Methods .- LP, MIP, GP
 - Heuristics . Simulated Annealing

Technical University of Lisbon

Forest Ecosystem Management under Global Change The Institute of Agronomy of Lisbon

15

III. B. MATHEMATICAL MODEL

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

$$Max SEV = \sum_{i=1}^{N} \sum_{j=1}^{M_i} sev_{ij} x_{ij} A_i$$

Subject to

$$\sum_{j=1}^{M_i} x_{ij} = 1, i = 1, ..., N$$

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} np v_{ijt} x_{ij} A_i = NPV_t, t = 1, ..., T$$

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} w_{ijt} x_{ij} A_i = W_t, t = 1, ..., T$$

$$\sum_{i=1}^{N} \sum_{j=1}^{M_{i}} carb_{ijt} x_{ij} A_{i} = CARB_{t}, t = 1, ..., T$$

$$\sum_{i=1}^{N} \sum_{j=1}^{M_i} runoff_{ijt} x_{ij} A_i = RunOff_t, t = 1, ..., T$$

$$W_{t+1} \leq (1 + alpha) \cdot W_t, t = 1, \dots, T - 1$$

$$W_{t+1} \ge (1 - alpha) \cdot W_t, t = 1, ..., T - 1$$

 $x_{ij} \in \{0,1\}, \forall i, j$

$$Max CARB = \sum_{i=1}^{N} \sum_{j=1}^{M_i} CARB_{ij} x_{ij} A_i$$

N-Number of stands (1000)

T – Number of periods during the planning horizon (30)

 M_i – Number of prescriptions (management regimes) for stand i.

 x_{ij} -Binary variable that is set equal to 1 if alternative j is chosen for stand i and to 0 otherwise.

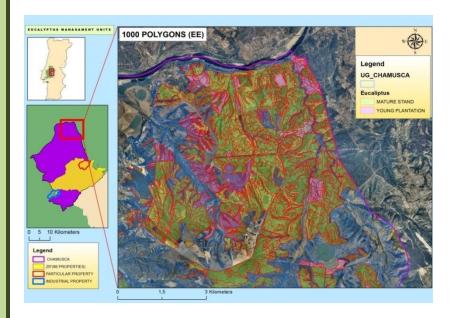
 A_i – Area of the stand i.

 npv_{ij} – Net present value per ha associated with prescription j and stand j.

 sev_{ij} - Soil expectation value per ha associated with prescription j and stand j.

 w_{ijt} – Harvested eucalypt pulpwood flow per ha in period t that results from assigning prescription j to stand j.

 $carb_{ijt}$ – Average carbon stock per ha in stand i in period t if prescription j is selected.


 $RunOff_{ijt}$ – Runoff per ha in stand i in period t if prescription j is selected.

alpha - Deviation allowed from target level (e.g. 10% variation)

Technical University of Lisbon

PChange Forest Ecosystem Management under Global Change

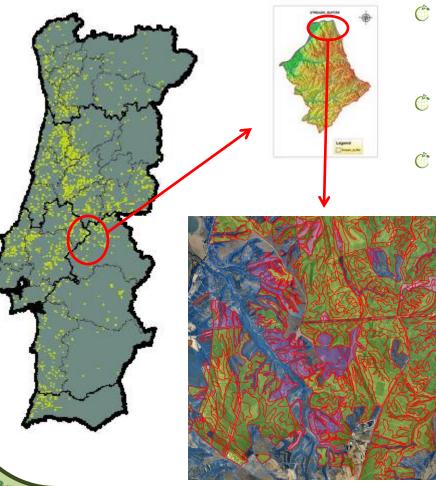
Output – Management plan

- List specifying which prescription (i.e management alternatives to use in each stand
- Optimal plan for the whole landscape ≠ Σ best management alternative for each stand.
- This is because you have higher level constraints (landscape constraints)

Forest Ecosystem Management under Global Change

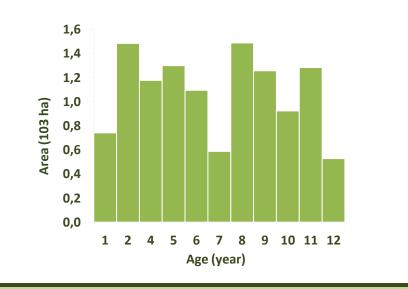
Technical University of Lisbon

Outline


- I. Background
- Il. Aims
- III. Material and Methods
 - C A. Decision Support System
 - B. Case Study
 - Study Area
 - Prescriptions used
 - © Objectives
 - Mathematical Model
 - © C. Scheme for modelling formulation and solving
- IV. Preliminary Results
- V. Discussion

For Change Forest Ecosystem Management under Global Change The Inst

UniteEnsideal@Trealstopperson


III.B. Case study

In order to test the use of the proposed DSS

FORCHANGE Forest Ecosystem Management under Global Change

- a case study for eucalyptus forest located in central Portugal
 - 1000 stands (11853 ha)
 - Real inventory data is used in this study

Technical University of Lisbon

The Institute of Agronomy of Lisbon

19

III. B. Prescriptions used

FMA FMA Details Operations Operations	details Sequential FMA's					
Eucalypt Silviculture Harvest age Between 10 and 12 and 12 and Coppice cycle Between 1 and 2 and						
Time Horizon (years) 30 Use same stand density during prescription Use same nr shoots per stool during prescription Don not allow two consecutive plantations						

- In contact with the industry we defined the possible prescriptions:
- 1) A cycle may have up to three rotations
 - 2) Rotation lengths between 9 and 15 yr
- ③ 3) In the coppice stands, three years after cutting there is a stool thinning leaving 2 stems per stool

 Thus, all possible prescriptions where generated with the prescription writer (up to 200 possible prescriptions per stand) and projections done for the whole area.

20

Technical University of Lisbon

III. Mat and Methods. Study case summary

Scenarios Generator

- Forest 1000 stands, 11873 ha
- Climate IPCC scenario A1B (current climate + 2 climate change scenarios)
- Prescription writer 198 prescriptions per stand

Simulation module:

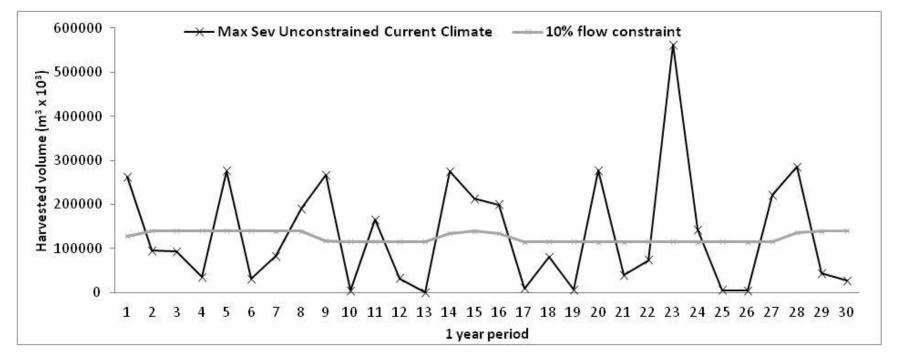
- Growth and yield indicators process based model
- Economic indicators (prices, costs, 4% interest rate)

Optimization module

- Maximize SEV (or Max Cstocks) with even-flow constraints (10%)
- Model I formulation with Horizon planning = 30 years (1-year period for flow constrains)
- Problem size: 198.000 binary variables, 2000 equations..
- Solver model used MIP

Forest Ecosystem Management under Global Change

Technical University of Lisbon


Outline

- I. Background
- Il. Aims
- III. Material and Methods
- A. Decision Support System
- B. Case Study
 - Study Area
 - Prescriptions used
 - © Objectives
 - Mathematical Model
- © ID. Scheme for modelling formulation and solving
- IV. Preliminary Results
- V. Discussion

For Change Forest Ecosystem Management under Global Change The

Universideal University of this bon The Institute SUP Agiond most of the Book and the SUP Agion of the Supervisional Agion of the Super

•Selecting the most productive management alternative would give a very unbalanced timber flow.

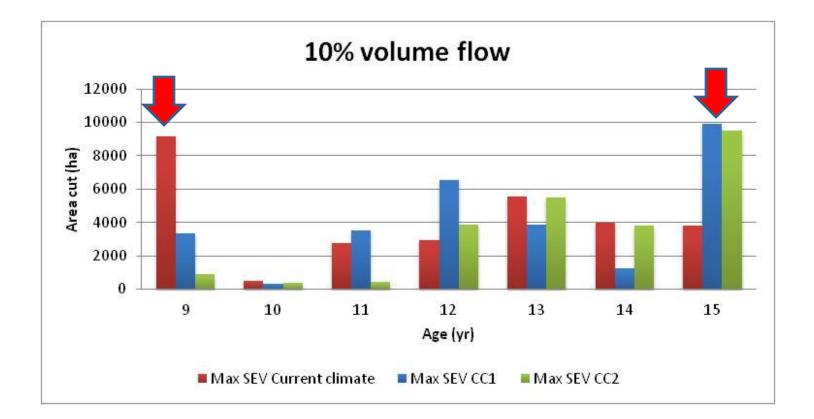
Technical University of Lisbon

G Forest Ecosystem Management under Global Change

IV. Results

Objective	Constraints	Climate Scenario	SEV
MaxSev		Current	158541436
	-	CC1	147247154
		CC2	130024206

Economic productivity of the study area will decrease between 10 and 20% depending on the climate scenario.

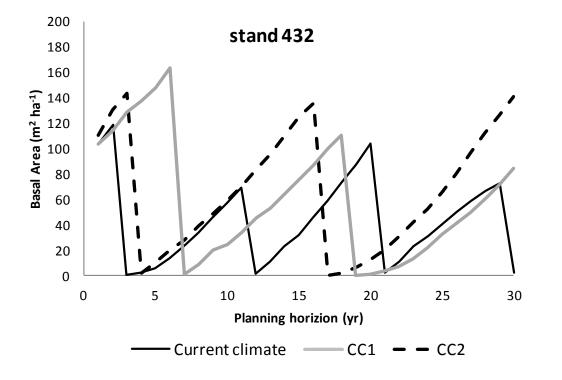

For Change Forest Ecosystem Management under Global Change The Inst

Technical University of Lisbon

The Institute of Agronomy of Lisbon

24

IV. Results – management trends under cc



Technical University of Lisbon

For Change Forest Ecosystem Management under Global Change

IV. Results – trends under cc – stand level

**

Technical University of Lisbon Forest Ecosystem Management under Global Change

Outline

- © I. Background
- II. Aims
- III. Material and Methods
- A. Decision Support System
- **B.** Case Study 6
 - Study Area
 - Prescriptions used
 - **Objectives** Ċ
 - Mathematical Model
- ID. Scheme for modelling formulation and solving 6
- IV. Preliminary Results
- V. Discussion and conclusions

FORCHANGE Forest Ecosystem Management under Global Change UniversidadeuTécnicavderLisbon

The Institute Sup agionden & Sup Carbon

V. Discussion and conclusions

⑦ Results indicate that Eucalipt productivity will be drastically reduced

- Results also indicate that management plans may need to be adapted
- We may delay cuttings under climate change in order to meet flow constraints.

V. Discussion and Conclusions

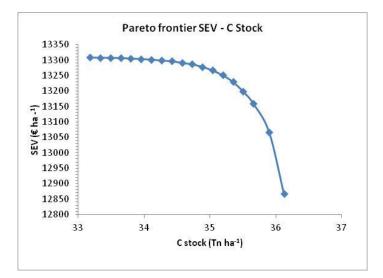
Good

modular structure gives flexibility to update the different modules

- the structure of this DSS will allows including new growth models and also models for risk assessment (fires, pests etc....)
- Results demonstrated the potential of the proposed approach to provide information and to support landscape analysis and planning under scenarios of climate change.

Bad

The system does not allow species substitution yet...


We do not have relation between runoff and erosion

Forest Ecosystem Management under Global Change

Technical University of Lisbon

V. Discussion – ongoing work

- We have developed a stochastic mathematical models to include fire risk in the optimization (results not digested yet...)
- This DSS allows constructing Pareto Frontiers for two-compiting objectives (in MIP formulation)

However, work is ongoing to use FGMethods/Interactive decision maps to show Pareto frontiers for more competing objectives

Technical University of Lisbon

Forest Ecosystem Management under Global Change 🚽

Sources of funding

- ForEAdapt .- Knowledge exchange between Europe and America on forest growth models and optimization for adaptive forestry FP7-PEOPLE-2010-IRSES-269257
- MOTIVE Models for adaptive forest management FP7-ENV-2008-1
- TLYPTUS Melhoramento genético do eucalipto para produção de pasta e energia promovendo o uso eficiente de recursos naturais QREN SI I&D - Projecto nº 5477 - PT-LYPTUS

The Institute of Agronomy of Lisbon

Technical University of Lisbon

THANK YOU!

Jordi Garcia-Gonzalo

Jordigarcia@isa.utl.pt

Instituto Superior de Agronomia Universidade Técnica de Lisboa (Portugal)

ForGhange Forest Ecosystem Management under Global Change

Technical University of Lisbon