

Forest productivity shifts under climate change in Europe – a model-based analysis with 4C

Petra Lasch, Christopher Reyer, Felicitas Suckow

Questions

- What are the potential impacts of climate change on forest productivity in Europe?
- What are the regional variations of projected productivity shifts for the main tree species?
- What are the main factors influencing the impacts of changing environmental conditions?

Method

Method

Application of the process-based forest growth model 4C

- at 132 Level II forest stands in Europe (ICP Forests)
- Four tree species (pine, spruce, beech, oak)
- Single tree data from the Level II database
- Soil data: European soil database & TEMS
- Climate data: CCLM past & future (A1B, B1)
- Model validation for 9 sites with soil/growth/flux data (Poster Suckow et al.)

2 realizations for the base period 1971-2000 + 24 'scenarios' per site

Analysis of **NPP** and of relative change of NPP (rNPP) compared with the base period (1971-2000) without considering disturbances

Regional and statistical analysis for Environmental Zones (Metzger et al. 2005) and four main tree species

Climate scenarios and Environmental Zones

NPP changes under A1B and B1, constant CO₂

Pine Spruce Beech Oak

21 – 24 May 201

NPP changes over all scenarios and species

elev. CO₂

NPP change per species and Environmental Zone

Change of NPP over temperature and precipitation change

Quantile regression of rNPP as function of temperature and precipitation change

Conclusions & ongoing activities

- Benefiting: northern and high altitude sites (ALN, BOR, ALS) with sufficient nutrient supply, not water limited
- In-between: CON
- Losing: southern sites with decreasing precipitation (MDM, Vayreda GCB 2012)
- Modelled effect of elevated CO₂ concentration predominates temperature and precipitation impacts
- Conifers gain more than broadleaved trees in the northern and central regions
- Analysis of NPP changes using quantile regression
- Additional climate and N deposition scenarios to enlarge the wide span of changing climatic and environmental conditions

Acknowledgements

ICP Forests office and all country experts for providing data

Thank you for your attention

