Webinaire Passifor 2 – 01/02/2022

INRAO

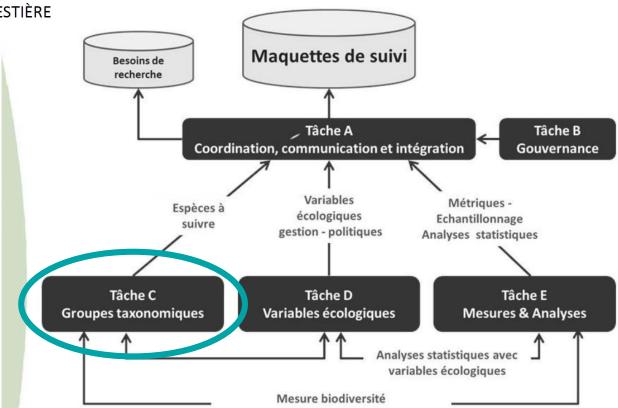
Sélectionner les groupes taxonomiques prioritaires pour les suivis de biodiversité en forêt tempérée

Analyse multi-critères des candidats

Hélène LE BORGNE & Christophe BOUGET

INRAE EFNO

Contexte: le projet national Passifor-2



PASSIFOR-2

Phase 2 du Projet:

"Proposition d'Amélioration du Système de Suivi de la biodiversité FORestière "

ÉLABORATION DE MAQUETTES DE SUIVI DE LA BIODIVERSITÉ FORESTIÈRE

INRAe

Passifor 2 - Tâche C

Identifier une combinaison opérationnelle et écologiquement pertinente des groupes taxinomiques et/ou écologiques et de méthodes idoines pour leur suivi

Livrable C1

Tableau panoramique quantitatif du nombre d'espèces forestières

Livrable C2

Construction de la grille d'analyse multicritères des atouts et contraintes, pratiques, taxonomiques et biologiques, des groupes taxonomiques

Livrable C3

Synthèses bibliographiques sur les modes innovants d'échantillonnage et d'identification taxinomique (bioacoustique, reconnaissance visuelle automatique, reconnaissance génétique)

Livrable C4

Résultats de l'analyse PROMETHEE multi-critères de sélection des groupes taxonomiques

Objectifs et méthodes

Objectif

Sélectionner des groupes cibles, réactifs, représentatifs, complémentaires, pour le suivi de la biodiversité forestière, en incluant les contraintes pratiques et budgétaires

Indicateurs de biodiversité directs : une littérature riche mais peu opérationnelle pour les forêts tempérées

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Review

Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe

Tian Gao^{a,b,*}, Anders Busse Nielsen^{b,c}, Marcus Hedblom^{d,e}

Biological Conservation 92 (2000) 185-197

Faunal indicator taxa selection for monitoring ecosystem health

Jodi Hilty, Adina Merenlender*

Division of Ecosystems Science, ESPM, University of California, 151 Hilgard MC#3110, Berkeley, CA 94720-3110, USA

Selecting indicator taxa for the quantitative assessment of biodiversity

DAVID L. PEARSON

Department of Zoology, Arizona State University, Tempe, Arizona 85287-1501, U.S.A

Biodiversity Letters (1996) 3, 18-25

BIODIVERSITY RESEARCH

How do indicator groups provide information about the relative biodiversity of different sets of areas?: on hotspots, complementarity and pattern-based approaches

D. P. FAITH* and P. A. WALKER Division of Wildlife and Ecology, CSIRO, P.O. Box 84, Lyneham, A.C.T. 2602. Australia

Available online at www.sciencedirect.com

Ecological Economics 50 (2004) 35-48

www.elsevier.com/locate/ecolecon

ANALYSIS

Testing alternative indicators for biodiversity conservation in old-growth boreal forests: ecology and economics

Artti Juutinen^{a,*}, Mikko Mönkkönen^b

^a Faculty of Economics and Business Administration, University of Oulu, P.O. Box 4600, Oulu FIN-90014, Finland ^bDepartment of Biology, University of Oulu, P.O. Box 3000, FIN-90014, Finland

Landscape and Urban Planning 49 (2000) 149-162

LANDSCAPE AND URBAN PLANNING

www.elsevier.com/locate/landurbplan

Towards a monitoring method and a number of multifaceted and hierarchical biodiversity indicators for urban and suburban parks

Martin Hermy*, Johnny Cornelis

Catholic University Leuven, Laboratory for Forest, Nature and Landscape Research, Vital Decosterstraat 102, B-3000 Leuven, Belgium

Agriculture, Ecosystems and Environment 98 (2003) 1-16

www.elsevier.com/locate/agee

Biotic indicators for biodiversity and sustainable agriculture—introduction and background

Wolfgang Büchs*

Federal Biological Research Centre for Agriculture and Forestry, Institute for Plant Protection in Field Crops and Grassland, Messeweg 11/12, DE-38104 Braunschweig, Germany

Quels groupes indicateurs de biodiversité en forêt?

Congruence inter-taxa?

Sélectionner des groupes représentatifs de la diversité des autres ou de la diversité totale ? co-variations en alpha ou beta-diversité

Ecological Indicators 87 (2018) 56-65												
Contents lists available at ScienceDirect Ecological Indicators	_											
ELSEVIER journal homepage: www.elsevier.com/locat	e/ecolind							ıts		ß-di	ver	sité
Original articles Cost-efficiency of cross-taxon surrogates in temperate for Laurent Larrieu ^{a,b,e} , Frédéric Gosselin ^e , Frédéric Archaux ^e , Richard Chemmanuelle Dauffy-Richard ^{e,1} , Marc Deconchat ^e , Marion Gosselin ^e , Sy Jean-Marie Savoie ^a , Laurent Tillon ^e , Christophe Bouget ^e	evalier ^c , Gilles Corriol ^d ,	bryophytes	g.beetles	for.g.beetles	bats	for.bats	s.beetles	vascular plants	lichens	polypores	birds	for.birds
	bryophytes		0.711 ^{ns}	0.602 ^{ns}	0.490 ^{ns}	0.474 ^{ns}	0.783 ^{ns}	0.599***	nc	0.509*	0.395 ^{ns}	0.398 ^{ns}
'	g.beetles	-0.16 ^{ns}		NT	0.299 ^{ns}	0.299 ^{ns}	0.559**	0.525**	NA	0.419 ^{ns}	0.308 ^{ns}	0.578 ^{ns}
' O'	for.g.beetles	0.18 ^{ns}	NT		0.240 ^{ns}	0.147 ^{ns}	0.409 ^{ns}	0.635 ^{ns}	NA	0.313 ^{ns}	0.573 ^{ns}	0.491 ^{ns}
<u> </u>	bats	0.24*	-0.34**	-0.12 ^{ns}		NT	0.272 ^{ns}	0.577 ^{ns}	NA	0.308 ^{ns}	0.071 ^{ns}	0.034 ^{ns}
S	for.bats	0.19 ^{ns}	-0.21 ^{ns}	-0.1 ^{ns}	NT		0.282 ^{ns}	0.393 ^{ns}	NA	0.306 ^{ns}	0.157 ^{ns}	0.205 ^{ns}
e	s.beetles	0.04 ^{ns}	0.17*	0.06 ^{ns}	0.16 ^{ns}	0.18 ^{ns}		0.471 ^{ns}	nc	0.501*	0.483 ^{ns}	0.450 ^{ns}
\(\)	vascular plants	0.13 ^{ns}	0.15 ^{ns}	O ^{ns}	0.09 ^{ns}	-0.04 ^{ns}	0.15 ^{ns}		0.479**	0.493 ^{ns}	0.489 ^{ns}	0.604*
0 -1	lichens	nc	NA	NA	NA	NA	nc	-0.02 ^{ns}		0.340 ^{ns}	NT	NT
8	polypores	0.22*	-0.17 ^{ns}	-0.02 ^{ns}	-0.02 ^{ns}	0.01 ^{ns}	0.1 ^{ns}	0.07 ^{ns}	O ^{ns}		0.331 ^{ns}	0.300 ^{ns}
INRAe	birds	0.04 ^{ns}	0.11 ^{ns}	0.06 ^{ns}	0.19 ^{ns}	0.17 ^{ns}	0.16 ^{ns}	-0.04 ^{ns}	NA	0.16 ^{ns}		NT
	for.birds	0.03 ^{ns}	0.08 ^{ns}	0.07 ^{ns}	0.19 ^{ns}	0.15 ^{ns}	0.13 ^{ns}	-0.06 ^{ns}	NA	0.19 ^{ns}	NT	

Quels groupes indicateurs de biodiversité en forêt?

Congruence inter-taxa?

Autres cas d'études (forestiers ou non) ou revues générales sur la congruence entre taxa

- Grand et al., 2004; Lovell et al., 2007; Negi and Gadgil, 2002; Ricketts et al., 2002)
 Prendergast et al. (1993), Lombard (1995), Oliver and Beattie (1996), Kerr (1997),
 Kati et al. (2004) Wolters et al. (2006)
 - Flore vasculaire Pharo et al. (1999) Fensham and Streimann (1997), Sauberer et al. (2004) Bräuniger et al. (2010) Duan et al. (2016)
 - Oiseaux (Blasi et al., 2010; Santi et al., 2010)
 - Flore vasculaire et Oiseaux Westgate et al. (2017)

"no taxon has as yet proved to be universal or even to be a good predictor for the species richness of other taxa" (Larrieu et al. 2018)

Sélection de groupes à suivre par des critères de classement

Biodivers Conserv (2010) 19:3769–3797 DOI 10.1007/s10531-010-9926-6

ORIGINAL PAPER

What criteria should be used to select biodiversity indicators?

Ulrich Heink · Ingo Kowarik

Feasibility for analysis and interpretation

- level of taxonomic knowledge (i)
- availability of databases for lifehistory (ii) traits
- portability, incl. detectability (i.e. (iii) availability of standard sampling methods)
- suitability for statistical analysis (iv)
- (v) availability of reference values

Efficiency

- (i) universality (i.e. broad geographical range and many macro-habitats covered)
- (ii) parsimony
- taxonomic sufficiency (i.e. relevance of (iii) using higher-taxon levels)

Relationship between indicator and indicanda

- (i) empirical level of correlation between indicator and indicanda
- aggregation of ecological (ii) information

Ecological information provided by the indicator

- relevance to stakeholder interests (e.g. obvious ecosystemic services),
- sensitivity to environmental change (ii)
- habitat specialization and dependence (iii) on environmental conditions,
- (iv) functional importance for the ecosystem,
- distinction between natural and (v) managed forests
- rarity of and threat to the taxon in (vi) managed forests

Stakeholder perception

- (i) acceptance of norms for taxon conservation
- easy depiction and comprehensibility (ii) of the taxon's role in forest ecosystems
- (iii) economic importance

L'analyse multi-critères par la méthode Prométhée

Brans et al., 1984 (analyses financières, outil d'aide à la décision) Service de Mathématique de Gestion de l'Université Libre de Belgique **Multi-criteria decision analysis** (MCDA)

Quelques problèmes de prise de décision

- Localisation: usine, aéroport, incinérateur...
- Tracé de voie ferrée, d'autoroute, ...
- Achat d'équipements
- Aménagement du territoire
- Evaluation et gestion de projets
- Evaluation environnementale
- Evaluation de portefeuilles financiers...

Pourquoi **PROMETHEE** ?

- Méthodologie éprouvée
 - 30 années de développement
 - Plus de 550 références scientifiques
- « Simplicité »
- Outils visuels uniques
- Interactivité
- Logiciel Visual PROMETHEE

Classement des groupes taxonomiques à suivre par la méthode Prométhée

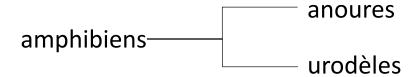
o prendre une décision

Sélectionner des groupes taxonomiques parmi des candidats au suivi de biodiversité en forêt tempérée

choisir entre plusieurs alternatives
 Groupes taxonomiques

sur la base de plusieurs facteurs
 Critères de sélection des indicateurs de biodiversité

selon leur importance


Détermination des poids selon l'objectif de suivi considéré

Liste des groupes taxonomiques à comparer

Inventaire biblio des groupes utilisés comme indicateurs de réponse en écologie forestière

61 groupes taxonomiques ou taxo-écologiques

Redondance hiérarchique de certains groupes Ex.

Amphibiens = catégorie SUPRA, Anoures et Urodèles = catégories INFRA

→ Création de 2 tableaux multi-groupes selon la résolution

Arthropodes

Ephemeroptera

Mecoptera

Neuropterida

Odonata

Orthoptera

Plecoptera

Raphidioptera

Hymenoptera Apoidea

Hymenoptera Chalcidoidea

Hymenoptera Braconidae

Hymenoptera Parasitica

Hymenoptera Symphyta

Hymenoptera Formicidae

Coleoptera Carabidae

Coleoptera coprophages

Coleoptera saproxyliques

Coleoptera Scolytinae

Diptera Ceratopogonidae

Diptera Syrphidae

Diptera Tipuloidea

Hemiptera

Lepidoptera Heterocères

Lepidoptera

Lepidoptera Rhopalocères

INRAe

Collembola

Crustacea Isopoda

Myriapoda Diplopoda

Myriapoda Chilopoda

Araneae

Opiliones

Acarii Phytoseiidae

Acarii Tetranychidae

Invertébrés

non.Arthropodes

Annélides Enchytréides

Annélides lombrics

Gasteropodes.aquatiques

Gastéropodes.terrestres

Nematodes

Rotifères

Mycètes

Hydnes Bankeraceae

Ectomycorhiziens

Pezizales

Polyporoïdes (Hymenochaetales + Gloeophyllales + Polyporales)

Lichens

Myxomycetes

Végétaux

Algues

Algues Bacillariophyta

Algues Charophyta

Algues Chlorophyta

Bryophytes

Flore.vasculaire

Phanérogames

Pteridophytes

Vertébrés

Amphibiens

Anura

Urodela

Reptiles

Chiropteres

Ongules

Micromammifères (Rongeurs +

Insectivores)

Oiseaux

Picidae

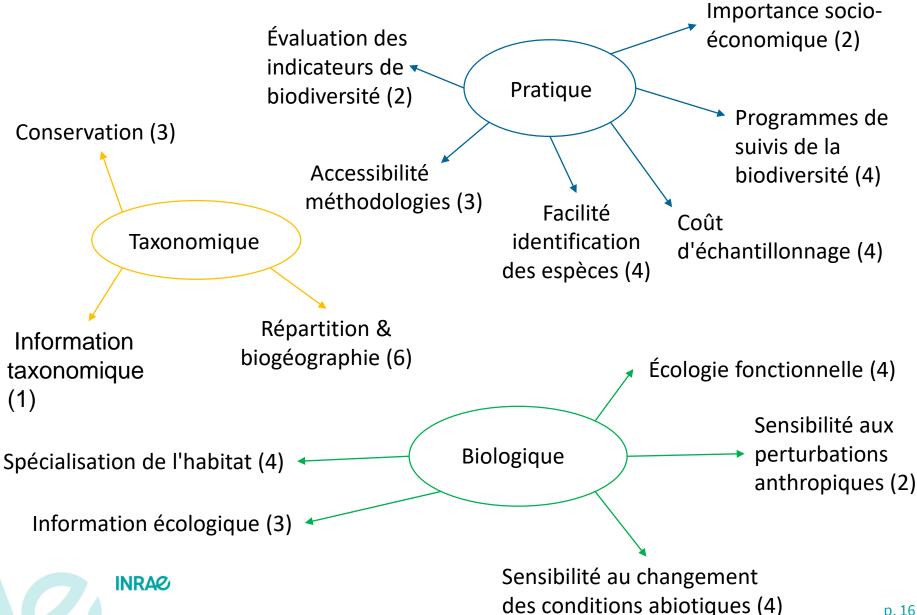
Liste des groupes taxonomiques à comparer

Tableau infra (54)

Anura, apoidea, araneae, bacillariophyta, bankeraceae, braconidae, bryophyte, carabidae, ceratopogonidae, chalcidoidea, charophyta, chilopode, chiropteres, chlorophyta, collembola, coprophages, diplopoda, ectomycorhiziens, enchytraeidea, ephemeroptera, formicidae, gasteropode aquatique, gasteropode terrestre, hemiptera, heterocera, isopodes, lichen, lombric, mecoptera, micromammifères, myxomycetes, nématode, neuroptera, odonata, ongules, opiliones, orthoptera, pezizales, phanérogames, phytoseiidae, picidae, plecopteres, polypores, pteridophytes, raphidioptera, reptiles, rhopalocera, rotifera, scolytidae, symphyte, syrphidae, tetranychidae, tipuloidea, urodela

Tableau supra (48)

Algues, amphibiens, apoidea, araneae, bankeraceae, bryophyte, carabidae, ceratopogonidae, chilopode, chiropteres, collembola, coprophages, diplopoda, ectomycorhiziens, enchytraeidea, ephemeroptera, flore vasculaire, formicidae, gasteropode aquatique, gasteropode terrestre, hemiptera, hyménoptères parasitoïdes, isopodes, lépidoptères, lichen, lombric, mecoptera, micromammifères, myxomycetes, nématode, neuroptera, odonata, oiseaux, ongules, opiliones, orthoptera, pezizales, phytoseiidae, plecopteres, polypores, raphidioptera, reptiles, rotifera, coléoptères saproxyliques, symphyte, syrphidae, tetranychidae, tipuloidea


Liste des critères d'évaluation

Littérature sur les critères de sélection d'indicateurs de biodiversité

- 61 critères binaires, quantitatifs ou qualitatifs
 - Regroupés en 14 catégories
 - Finalement réduits à 46 critères
- Classés en 3 méta-critères :
 - Taxonomique (n=10)
 - Pratique (n=19)
 - Biologique (n=17)

Liste des critères d'évaluation

> Exemples de critères d'évaluation

TAXONOMIQUE

Nombre d'espèces considérées comme introduites pour ce groupe taxonomique

Existence d'au moins un atlas régional sur la répartition des espèces pour ce groupe taxonomique

Pourcentage d'espèces considérées comme vulnérables ou menacées d'extinction

•••••

BIOLOGIQUE

Connaissance approfondie de la biologie et de l'écologie sur ce groupe taxonomique

Existence d'une base de données sur les traits d'histoire de vie pour ce groupe taxonomique

Pourcentage d'espèces considérées comme des espèces forestières

Relation bien connue entre le groupe taxonomique et les métriques de structure de l'habitat forestier

Groupe fréquemment utilisé dans des articles scientifiques comme indicateur de biodiversité en forêt tempérée

Changements démontrés d'une réponse à la gestion forestière des populations du groupe taxonomique

Exemples de critères d'évaluation

PRATIQUE

Disponibilité d'au moins une méthode et protocole standardisés d'échantillonnage

Méthodologie du code-barres ADN est utilisée dans le suivi de la biodiversité de ce groupe taxonomique

Taille de la communauté d'experts taxonomiques disponibles en France pour identifier les espèces

Coût associé au matériel requis pour échantillonner et identifier ce groupe taxonomique

Existence de programmes de suivis à l'échelle nationale

Existence de données pour ce groupe taxonomique dans des habitats de référence (i.e. vieilles forêts)

Nombre d'espèces d'intérêt public (ravageurs, gibiers, espèces récoltables ou récréatives)

Constitution de la matrice multi-critères multi-groupes

Matrice 46 critères * 61 groupes

- Certaines groupes écartés ou redéfinis selon la disponibilité d'experts
- Consultation de plus de 60 experts
 - (- de 5% de NA)

Constitution de la matrice multi-critères multi-groupes

Taxon	Expert	Taxon	Expert
Acarii Phytoseiidae	M.S. Tixier avec S. Kreiter	Annélides Enchytréides	C. Pelosi
Acarii Tetranychidae	M.S. Tixier avec S. Kreiter	Annélides lombrics	T. Decaëns + M. Hedde
Araneae	J. Pétillon + C. Jacquet	Gasteropodes.aquatiques	O. Gargominy
Coleoptera Carabidae	C. Bouget	Gastéropodes.terrestres	O. Gargominy
Coleoptera coprophages	P. Jay-Robert	Nematodes	J. Trap
Coleoptera saproxyliques	C. Bouget	Rotifères	W. de Smet
Coleoptera Scolytinae	G. Parmain	Ectomycorhiziens	M. Roy
Collembola	J. Cortet	Hydnes Bankeraceae	P.A. Moreau
Crustacea Isopoda	F. Noël	Lichens	R. Poncet
Diptera Ceratopogonidae	D. Argot	Myxomycetes	M. Meyer
Diptera Syrphidae	C. Dussaix	Pezizales	N. Van Vooren
Diptera Tipuloidea	C. Quindroit	Polyporoïdes	G. Corriol
Ephemeroptera	M. Brulin	Algues	S. Hamlaoui avec C. Bernard
Hemiptera	J.C. Streito	Algues Bacillariophyta	S. Hamlaoui avec C. Bernard
Hymenoptera Apoidea	S. Gadoum	Algues Charophyta	S. Hamlaoui avec C. Bernard
Hymenoptera Braconidae	Y. Braet	Algues Chlorophyta	S. Hamlaoui avec C. Bernard
Hymenoptera Chalcidoidea	JY Rasplus	Bryophytes	M. Gosselin
Hymenoptera Formicidae	B. Kaufmann + C. Galkowski	Flore.vasculaire	R. Chevalier
Hymenoptera Parasitica	C. Villemant	Phanérogames	S. Cadet
Hymenoptera Symphyta	T. Noblecourt	Pteridophytes	R. Chevalier
Lepidoptera	A. Lévêque	Amphibiens	JC De Massary
Lepidoptera Heterocères	A. Lévêque	Anoures	JC De Massary
Lepidoptera Rhopalocères	A. Lévêque	Chiropteres	L. Barbaro
Mecoptera	P. Tillier	Micromammifères	L. Tillon
Myriapoda Chilopoda	E. Iorio	Oiseaux	F. Archaux
Myriapoda Diplopoda	JJ. Geoffroy	Ongules	C. Baltzinger
Neuropterida	P. Tillier	Picidae	L. Barbaro
Odonata	J.L. Pratz	Reptiles	C. Baudran
Opiliones	E. Delfosse	Urodèles	JC De Massary
Orthoptera	C. Lemoine		
Plecoptera	M. Brulin		
Raphidioptera	P. Tillier		

Pondération des critères

Selon l'objectif du suivi : variation des poids relatifs des critères

Objectifs analysés:

- Objectif 1: suivi générique de la biodiversité forestière
- Objectif 2: suivi de la biodiversité forestière en forêt exploitée versus non-exploitée
- Objectif 3: suivre l'effet de gestion ou politique forestière sur la biodiversité forestière
- Objectif 4: suivi de la biodiversité forestière en lien avec le changement climatique
- → Animation d'un atelier d'experts (ONF, OFB, MNHN, INRAE, OFS) Chaque critère se voit attribuer un poids reflétant son importance

Application de l'analyse multicritères Prométhée

Pondération	35	35	20	10	15	40
				Espèces		Espèces
Groupe taxo	Connaissances	THV	Atlas national	Introduites	Liste rouge	rares
amphibiens	0	1	1	6	1	23
apoidea	Critère	Critère	Critère	Critère	Critère	Critère
araneae	bénéfique	bénéfique	bénéfique	non13	bénéfique	bénéfique
bryophyte	1	1	0	bénéfique	0	40
carabidae	1	1	0	5	0	15

Moyenne pondérée de toutes les différences appariées inter-groupes à chaque critère

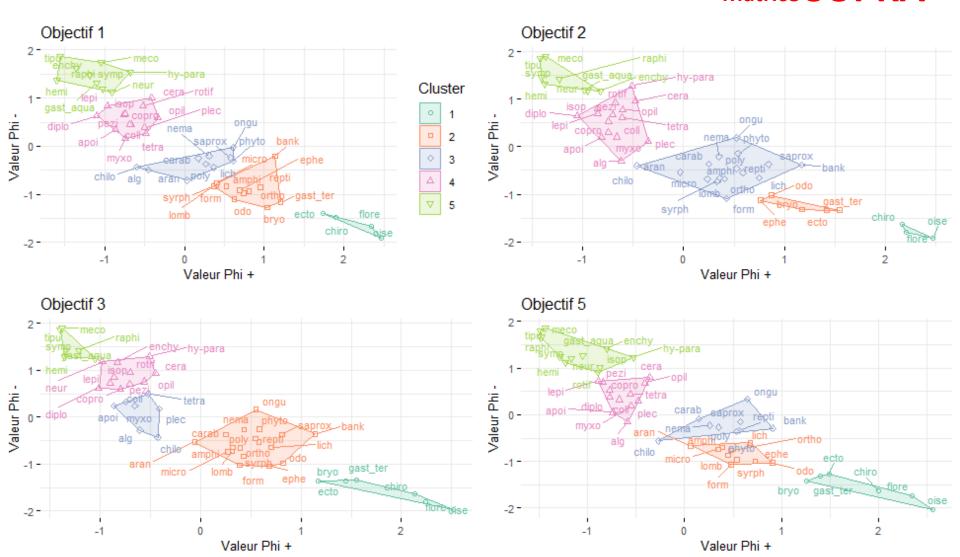
Comparaisons appariées et calcul des flux de préférence :

- Φ^+ (caractère surclassant du groupe) et Φ^- (combien un groupe est surclassé)
- $\Phi = \Phi^+ \Phi^- \rightarrow \text{les meilleurs groupes sont ceux où } \Phi^+ \text{ est grand et } \Phi^- \text{ petit}$
- Flux net >0 si le groupe est généralement préféré aux autres

Application de l'analyse multicritères Prométhée

1. Classement des groupes (©Prométhée)

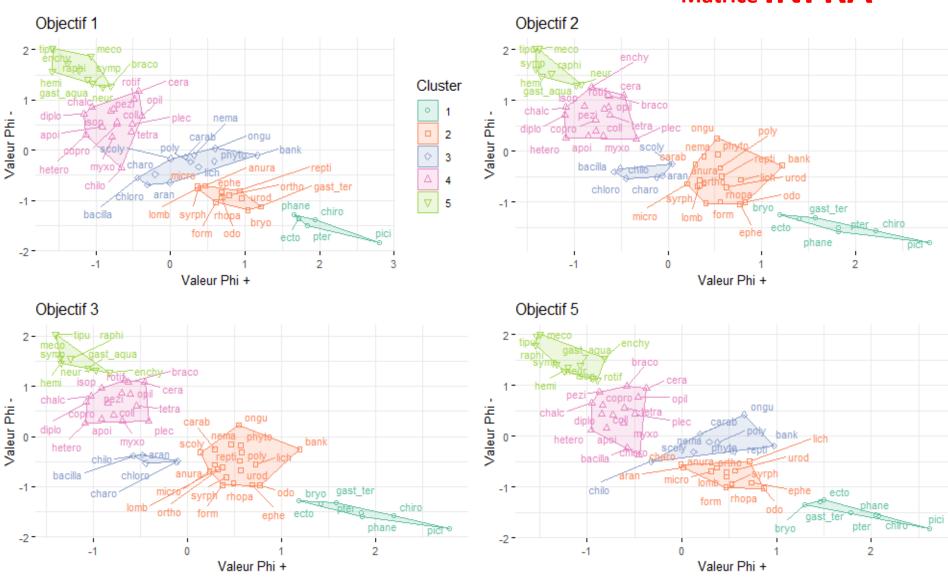
2. Partition des groupes en clusters (k=5) avec la méthode de clustering PAM (Partition Around Medoids) basée sur les valeurs de la métrique Phi (indice de préférence ©Prométhée)


Résultats

2021

Très faibles variations du classement des groupes selon l'objectif de suivi

Matrice **SUPRA**



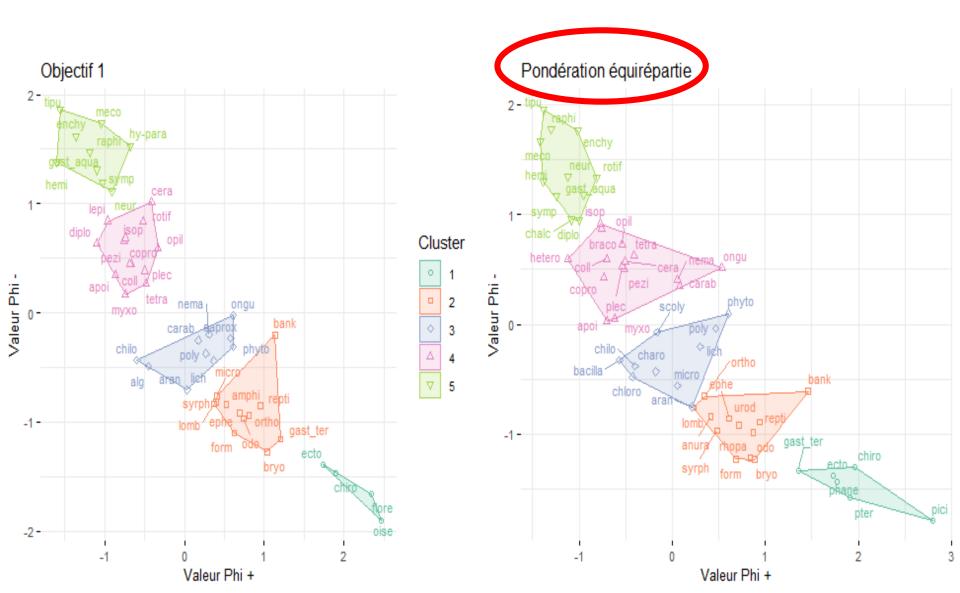
Supra	obj1	pam	obj2	pam	obj3	pam	obj5	pam
Oiseaux	1	Α	1	Α	1	Α	1	Α
Flore_vasculaire	2	Α	2	Α	2	Α	2	Α
Chiropteres	3	Α	3	Α	3	Α	3	Α
Champ. Ectomycorhiziens	4	Α	5	В	5	Α	4	Α
Gasteropodes_terrestres	5	В	4	В	4	Α	5	Α
Bryophytes	6	В	6	В	6	Α	6	Α
Reptiles	7	В	13	С	14	В	17	С
Orthoptera	8	В	14	С	15	В	13	В
Formicidae	9	В	10	С	10	В	9	В
Odonata	10	В	8	В	7	В	7	В
Ephemeroptera	11	В	7	В	8	В	8	В
Amphibiens	12	В	17	С	19	В	15	В
Hydnes	13	В	9	С	9	В	14	С
Syrphidae	14	В	16	С	12	В	10	В
Lombrics	15	В	15	С	16	В	11	В
Micromammifères	16	В	19	С	17	В	16	В
Acariens Phytoseiidae	17	С	20	С	20	В	18	С
Lichens	18	С	11	С	11	В	12	В
Col saproxyliques	19	С	12	С	13	В	20	С
Araneae	20	С	23	С	23	В	19	В
Polypores	21	С	18	С	18	В	21	С
Ongulés	22	С	24	С	24	В	23	С
Nématodes	23	С	22	С	21	В	22	С
Carabidae	24	С	21	С	22	В	25	С

Très faibles variations du classement des groupes selon l'objectif de suivi

Matrice INFRA

Infra	obj1	pam	obj2	pam	obj3	pam	obj5	pam
Picidae	1	Α	1	Α	1	Α	1	Α
Pteridophytes	2	Α	4	Α	4	Α	4	Α
Chiropteres	3	Α	2	Α	2	Α	2	Α
Champ. ectomycorhiziens	4	Α	6	Α	6	Α	6	Α
Phanérogames	5	Α	3	Α	3	Α	3	Α
Gasteropodes_terrestres	6	В	5	Α	5	Α	5	Α
Bryophytes	7	В	7	Α	7	Α	7	Α
Urodela	8	В	13	В	14	В	14	В
Reptiles	9	В	15	В	16	В	20	С
Orthoptera	10	В	16	В	17	В	16	В
Formicidae	11	В	12	В	12	В	11	В
Rhopalocera	12	В	10	В	11	В	10	В
Odonata	13	В	8	В	8	В	8	В
Ephemeroptera	14	В	9	В	9	В	9	В
Champ. Hydnes	15	С	11	В	10	В	17	С
Anura	16	В	19	В	21	В	19	В
Syrphidae	17	В	17	В	15	В	12	В
Lombrics	18	В	18	В	18	В	13	В
Micromammifères	19	В	21	В	19	В	18	В
Ac. Phytoseiidae	20	С	22	В	22	В	21	С
Lichens	21	С	14	В	13	В	15	В
Araneae	22	С	25	С	26	С	22	В
Ongules	23	С	28	В	28	В	27	С
Polypores	24	С	20	В	20	В	24	С
Chlorophyta (algae)	25	С	29	С	29	С	30	D

Тахо	Rang_obj1	Rang_obj2	Rang_obj3	Rang_obj5
anura	16	19	21	19
apoidea	38	34	36	34
araneae	22	25	26	22
Bacillariophyta	30	31	31	31
bankeraceae	15	11	10	17
braconidae	46	42	42	42
bryophyte	7	7	7	7
carabidae	27	23	24	29
ceratopogonidae	43	41	40	40
chalcidoidea	45	46	45	43
charophyta	28	26	27	23
chilopode	31	30	30	28
chiropteres	3	2	2	2
chlorophyta	25	29	29	30
collembola	37	35	35	36
coprophages	36	38	39	41
Diplopoda	44	45	43	39
ectomycorhiziens	4	6	6	6
enchytraeidea	52	47	47	47
ephemeroptera	14	9	9	9
formicidae	11	12	12	11
gasteropode aqua	49	49	49	48
gasteropode_terr	6	5	5	5
hemiptera	53	51	51	49
heterocera	39	37	37	35
Isopodes	41	44	46	46
lichen	21	14	13	15
lombric	18	18	18	13
mecoptera	51	53	53	53
micromammifères	19	21	19	18
myxomycetes	33	33	33	32
nématode	26	24	23	26
neuropterida	47	48	48	50
odonata	13	8	8	8
ongules	23	28	28	27
opiliones	35	39	38	38
orthoptera	10	16	17	16
pezizales	42	40	41	44
phanérogames	5	3	3	3
phytoseiidae	20	22	22	21
picidae	1	1	1	1
plecopteres	34	32	32	33
polypores	24	20	20	24
pteridophytes	2	4	4	4
4 4 44				
raphidioptera reptiles	50 9	50 15	50 16	52 20
rhopalocera	12	10	11	10
· ·				
rotifera	40 30	43 27	44 25	45 25
scolytidae	29	27	25 53	25 51
symphyte	48	52	52 15	51 12
syrphidae	17	17	15	12
tetranychidae	32	36	34	37
tipuloidea	54	54	54	54
urodela	8	13	14	14


Très faibles variations du classement des groupes selon l'objectif de suivi

	Rang	Rang	Rang	Rang
	Obj1	Obj2	Obj3	Obj4
Rang Obj1				
Rang Obj2	0,98			
Rang Obj3	0,98	1,00		
Rang Obj4	0,96	0,96	0,96	
Rang Obj5	0,97	0,99	0,99	0,95

Très fortes corrélations positives de Spearman

→ classement similaire pour chaque comparaison de paire d'objectifs

Très faible impact des variations de pondération des critères

Classement des critères discriminants

- → D'après les valeurs de Phi unicritères par groupe, les critères discriminants ne sont pas ceux qui ont un poids élevé
- → Importance des méta-critères pratiques et biologiques

Exemple: objectif 1, pondération sur tous les méta-critères

	A	**************************************	~	SA SA	and the second s	•
Rang	Critères	Critères	Critères	Critères	Critères	Critères
1	Espèces forêt mature	Experts taxo	Experts taxo	Automatisation	Espèce endémiques	Automatisation
2	Experts taxo	Automatisation	Automatisation	Librairie ADN	Experts taxo	Traits Hist Vie
3	Automatisation	Substitution taxon	Substitution taxon	Traits Hist Vie	Coûts en temps	Indicateur Gestion
4	Substitution taxon	Coûts en temps	Librairie ADN	Liste rouge	Indicateur Gestion	Liste rouge
5	Librairie ADN	Traits Hist Vie	Traits Hist Vie	Identifiabilité	Liste rouge	Identifiabilité
6	Traits Hist Vie	Liste rouge	Indicateur Gestion	Affinité Compo Forestière	Identifiabilité	Affinité Compo Forestières

Des critères handicapants / pénalisants ?

> Sélection finale : stratégie 1

Méthode = AMC n°1 brute (> sélection 1) + AMC n°2

 $AMC n^2 =$

Classement des groupes par AMC ©Prométhée basé uniquement sur les critères relevant des méta-critères taxonomiques et biologiques, hors critères pratiques

Prospective : pari sur le progrès des méthodes à l'avenir, ne pas pénaliser un groupe sur ses coûts d'échantillonnage/identification actuels

Ajouter manuellement des groupes d'intérêt écologique complémentaire

pour balayer tous les compartiments forestiers, tous les stades sylvicoles :

- sol,
- milieux ouverts,
- milieux aquatiques associés,
- bois mort,
- vieux arbres...

Et pour intégrer tous les macro-groupes taxinomiques

- Arthropodes,
- autres Invertébrés,
- Vertébrés,
- Végétaux,
- Champignons

Supra	rang_obj1	rang_obj 2	rang_obj 3	rang_obj 5	rang_moyen
Chiroptères	2	1	1	1	1.25
Oiseaux	1	3	3	3	2.5
Gastéropodes_terrestres	5	2	2	2	2.75
Coléoptères	4	4	4	4	4
saproxyliques	<u> </u>	•			·
Bryophytes	7	5	5	5	5.5
Flore vasculaire	6	6	6	6	6
Champ. Ectomycorhiziens	3	8	8	8	6.75
Lichens	10	7	7	7	7.75
Champ. Hydnes	9	9	9	9	9
Acariens Phytoséides	8	10	10	10	9.5
	_	11	_	_	
Ephemeroptera	14		11	11	11.75
Nematoda	12	12	12	12	12
Chilopoda	19	13	13	13	14.5
Syrphidae	16	15	15	15	15.25
Plecoptera	23	14	14	14	16.25
Lombrics	17	17	17	17	17
Odonata	22	16	16	16	17.5
Reptiles	11	20	20	20	17.75
Myxomycota	21	19	19	19	19.5
Algae	13	22	22	22	19.75
Polypores	27	18	18	18	20.25
Araneae	20	21	21	21	20.75
Orthoptera	15	24	24	24	21.75
Rotifera	18	23	23	23	21.75
Micromammifères	24	25	25	25	24.75

Infra	rang_obj1	rang_obj2	rang_obj3	rang_obj5	rang_moyen
Picidae	1	1	1	1	1
Chiroptères	2	2	2	3	2.25
Gastéropodes_terrestres	4	3	3	2	3
Bryophytes	6	4	5	4	4.75
Pteridophytes	5	5	4	6	5
Champ. Ectomycorhiziens	3	7	7	9	6.5
Lichens	12	6	6	5	7.25
Charophyta (Algae)	8	10	10	8	9
Bankeraceae (Champ. Hydnes)	9	8	8	13	9.5
Acariens Phytoseides	7	11	11	16	11.25
Phanerogames	26	9	9	7	12.75
Ephemeroptera	15	13	13	12	13.25
Nematoda	13	12	12	17	13.5
Syrphidae	16	16	15	10	14.25
Scolytinae	18	14	14	11	14.25
Chilopoda	20	15	17	15	16.75
Bacillariophyta	10	19	19	19	16.75
Odonata	23	18	16	14	17.75
Lombrics	19	20	20	18	19.25
Plecoptera	27	17	18	20	20.5
Reptiles	11	23	24	28	21.5
Chlorophyta	14	25	25	24	22
Araneae	22	24	22	21	22.25
Myxomycota	24	22	23	22	22.75
Polypores	32	21	21	26	25
Orthopera	17	28	28	27	25

Bilan stratégie 1

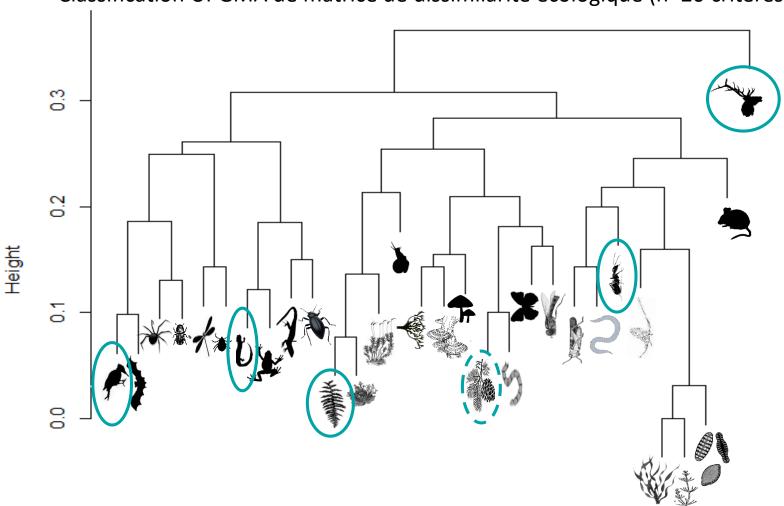
AMC n°1 brute (> sélection 1) + AMC n°2

		Sélection brute ©Prométhée	compléments
	Sol	Gastéropodes terrestres Champ. Ectomycorhiziens	Nematoda ou Chilopoda ?
	Milieux ouverts	Flore vasculaire	
Habitats occupés	Milieux aquatiques associés	Oiseaux	Ephemeroptera, Algae Charophyta?
	Bois mort	Bryophytes, Picidae	Coléos saproxyliques
	Vieux arbres	Chiroptères, Picidae	Lichens, Coléos saproxyliques
	Arthropodes		Coléos saproxyliques, Ephemeroptera, Chilopoda ?
	autres Invertébrés	Gastéropodes terrestres	Nematoda?
Catégorie taxinomique	Vertébrés	Oiseaux, Chiroptères, Picidae	
	Végétaux	Flore vasculaire, Phanérogames, Ptéridophytes, Bryophytes	Algae Charophyta ?
	Champignons	Champ. Ectomycorhiziens	Lichens

Sélection finale : stratégie 2

Méthode = AMC n°1 brute (> sélection 1) + post-traitement par filtre économique

(matrice mira, obj.)		
Rang	Groupe taxonomique Co	oût total
1	Pics	3
2	Ptéridophytes	2
3	Chiroptères •••	4
4	Ectomycorhiziens 📣	4
5	Phanérogames ****	2
6	Gastéropodes terrestre	4
7	Bryophytes 🥒	3
8	Urodèles	2
9	Reptiles	3
10	Orthoptères	3
11	Fourmis	2
12	Rhopalocères 🥻	2
13	Odonates 🖈	3
14	INRA € phéméroptères ✓	4
15	Hydnes 🔭	3


 Sélection des moins coûteux dans le haut du classement

 (circularité partielle) L'estimation des coûts est basée sur deux souscritères de notre grille (i.e. coûts associés au matériel requis et au temps nécessaire pour échantillonner et identifier ce groupe taxonomique)

> Sélection finale : stratégie 3

Méthode = AMC n°1 brute (> sélection 1) + post-traitement par filtre de complémentarité écologique, puis filtre économique par branche

Classification UPGMA de matrice de dissimilarité écologique (n=20 critères biologiques)

Perspectives

2021

Désigner des couples groupes / méthodes

> Effet opérateur

Un groupe = un expert > un biais « expert » ?

Estimer une partie de l'effet opérateur de cette analyse multicritères, en mesurant la variabilité inter-experts dans le remplissage de la grille pour un même groupe.

Le positionnement de ce groupe dans le classement Prométhée estil affecté par les éventuelles divergences entre experts de ce groupe?

Oiseaux et Flore vasculaire : une douzaine d'experts consultés pour chaque groupe

Comment se classent Oiseaux1 à Oiseaux10, Flore1 à Flore 10, parmi tous les autres groupes ?

Remerciements

- à Hervé Jactel (formation © Prométhée)
- aux participants de l'atelier de pondération
- à tous les naturalistes/taxinomistes ayant renseigné les grilles pour leur spécialité

