Light Use Efficiency and productivity of 16 genotypes of *eucalyptus* along a 6-year rotation in Brazil

<u>Guerric le Maire</u>, Joannès Guillemot, Otavio Campoe, José-Luiz Stape, Jean-Paul Laclau, Yann Nouvellon

Stemwood productivity = light absorbed by the trees (APAR) x Light Use Efficiency (LUE)

Which traits explain the differences in APAR among genotypes?

How does LUE vary among genotypes, and how does it correlates with annual growth?

Experiment

16 clones, highly productives in their respectives origins => expected high production variability when planted in the same area

Genotype	Species	Propagation	State of origin	Climate
1	E. grandis	Seed	SP	Cfa
2	E. grandis	Seed	SP	Cfa
3	E. grandis × E. urophylla	Clone	SP	Cwa
4	E. grandis × E. urophylla	Clone	SP	Cfa
5	E. grandis × E. urophylla	Clone	SP	Cwa
6	E. grandis × E. urophylla	Clone	ES	Aw
7	E. grandis × E. urophylla	Clone	MG	Cwa
8	E. grandis × E. urophylla	Clone	MG	Aw
9	E. grandis × E. urophylla	Clone	BA	Am
10	E. grandis × E. urophylla	Clone	SP	Cfa
11	E. grandis × E. urophylla	Clone	SP	Cfa
12	E. urophylla × sp	Clone	MG	Cwb
13	E. grandis × E. urophylla	Clone	MG	Cwb
14	E. saligna	Clone	RS	Cfa
15	E. grandis	Clone	SP	Cfa
16	E. grandis \times E. camaldulensis	Clone	BA	As

10 repetitions (blocks)16 plots (genotypes) per blocks1 plot = 12 lines of 16 trees (3x2 m)

22°58'20"

100 central trees analysed (avoid border effects)

Measurements

Date	age (years)	DBH	Н	DBH border t.	Biomass	Leaf angles	SPAD	Leaf Refl/Tra n	LAI-2000
03/11/2009	0								
17/05/2010	0.53	Х	Х						
03/11/2010	1.00	Х	Х		Х	Х	Х	Х	
01/06/2011	1.58	Х	Х						
01/01/2012	2.16	Х	Х						
01/06/2012	2.58			Х	Х	Х			
01/07/2012	2.66	Х	Х						
15/01/2013	3.20	Х	Х						
15/07/2013	3.70	Х	Х						
15/11/2013	4.04				Х	Х			
15/02/2014	4.29	Х	Х						
15/06/2014	4.62								Х
23/06/2014	4.64	Х	Х	Х	Х	Х	Х		
31/10/2014	5.00	Х	Х						
15/02/2015	5.28	Х	Х						
15/07/2015	5.70	Х	Х						
15/11/2015	6.03				Х	Х	Х	Х	
15/01/2016	6.20	Х	Х						

Measurements

Ex: clone 14

Measurements

Ex: clone 14

Modelling

MAESPA model (Wang and Jarvis 1990, Duursma and Medlyn 2012)

- ➢ 3D representation of each tree of the clonal test
- > Measurements of the main foliage characteristics
- Interpolation for the rotation
- Simulations of APAR for each tree
- Comparison with LAI-2000 measurements for validation

Results

Results

High variability of production, LAI, fAPAR and LUE

Increase of LUE during the rotation

On a rotatinon-length basis, final trunk biomass is well correlated to LUE on an intra- and inter-genotype basis

Results

0.8Genotype 0.7Block APAR 0.6 fraction of variance GINI Residuals 0.5 0.4 0.30.2 0.1 0 2 3 56 4 age (y)

Plot-scale productivity is explained by:

As expected, genotype is the main effect, then APAR the first year

GINI (heterogeneity) and other block effects explains part of the remaining variability

End of the rotation: other factors (allocation, water limitation, etc.)

Genotype productivity is explained by final years LUE

Correlation of final stem biomass with :	R2
LUE year 1	n.s.
LUE year 2	n.s.
LUE year 3	n.s.
LUE year 4	0.45 (p<0.01)
LUE year 5	0.64 (p<0.01)
LUE year 6	0.61 (p<0.01)

Differences between genotypes productivity :

Major influences of factors/limitations other than APAR for wood produced at harvest date (included in the "LUE" term)

Factors controlling stemwood production at the end of the rotation are highly important to explain final biomass between genotypes

Light absorption, light use efficiency and productivity of 16 contrasted genotypes of several *Eucalyptus* species along a 6-year rotation in Brazil

Guerric le Maire^{a,b,c,*}, Joannès Guillemot^{a,c,d}, Otavio C. Campoe^{e,f}, José-Luiz Stape^f, Jean-Paul Laclau^{a,c}, Yann Nouvellon^{a,c}

^a CIRAD, UMR Eco&Sols, F-34398 Montpellier, France

^b UNICAMP, Campinas, SP CEP: 13083-860, Brazil

^c Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier, SupAgro, Montpellier, France

^d ESALQ, Universidade de São Paulo, Piracicaba, SP CEP 13418-900, Brazil

^e Federal University of Lavras – UFLA, Lavras, MG CEP: 37.200-000, Brazil

^f UNESP-FCA, Botucatu, SP CEP 18.610-300, Brazil

Thank you !

