Risk aversion hinders foresters to adapt to climate change

Marielle Brunette^{1,2}, Marc Hanewinkel³, Rasoul Yousefpour³

¹Université de Lorraine, Université de Strasbourg, AgroParisTech, CNRS, INRA, BETA, 54000, Nancy, France.

²Associate researcher CEC, Paris.

³Forestry Economics and Forest Planning, University of Freiburg, Germany.

Curitiba, Brazil, September 29th to October 5th, 2019

Climate change (CC) and adaptation

CC

- Impact on ecosystems : \uparrow in temperature and modification of the precipitation regime.
- Main concern : CC increases frequency and intensity of natural events.
- Consequence in forest : reduction in growth and productivity, defoliation, mortality, etc.

Adaptation

- Forest adaptation strategies are recommended : better-adapted tree species, ↓ of the rotation length, ↓ of the tree density, change in the thinning regime, species mix, etc.
 Adaptation is not sufficiently implemented by foresters (Andersson and Keskitalo, 2018).
- Adaptation is associated to many unknowns : management changes, adoption of new practices, costs/benefits and efficiency to fight against CC are unknown, etc.
 → Foresters take decision not only in a risky environment but in an uncertain one.

\downarrow

Do foresters' preferences towards risk and uncertainty affect the adaptation decisions?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Positioning in the existing literature

Preferences

- Lottery choices from experimental economics like MPL (Holt and Laury, 2002) or OLS (Eckel and Grossman, 2008).
- Musshof and Maart-Noelck (2014), Sauter et al. (2016a, 2016b), Brunette et al. (2017a), Sauter et al. (2018).
- Results : forest owners are risk averse + impact on decisions (probability to harvest (+), WTP for insurance (0)).
- Some recent research on uncertainty aversion (Brunette et al. 2017b) but no measurement.

Adaptation

- Cost-benefit analysis for different adaptation strategies :
 - Better-adapted tree species : Hanewinkel et al. (2010), Brunette et al. (2014)
 - Species mix : Yousefpour and Hanewinkel (2014)
 - ↓ rotation length : Bréda and Brunette (2019)
 - Comparison of strategies : Brèteau-Amores et al. (2019)
- Questionnaires about :
 - Perception of CC : Blennow et al. (2012), Yousefpour and Hanewinkel (2015)
 - Potential adaptation options : Ogden and Innes (2009), Lidskog and Sjödin (2014)

- Both : Sousa-Silva et al. (2018).
- Results : main role of risk perception, some brakes for adaptation (lack of information).

Objective

Research question

Observations

- Foresters' risk preferences are never analysed as a potential driver for adaptation decision.
- Uncertainty preferences of foresters were not studied and never quantified.
- Adaptation decisions were analysed as a whole (willingness and intensity together).
- German and French are the main samples in this literature with no comparison between them.

Objective

To analyse the role of the preferences towards risk and uncertainty of French and German foresters on their willingness and intensity of adaptation.

Methodology

- Computerized questionnaire send to 1000 private and public foresters in Grand-Est in France and Baden-Württemberg in Germany in Sept. 2018 → 88 fully completed (39 G, 49 F).
- Questionnaire in three parts :
 - Part 1 : Lottery choices to quantify risk and uncertainty preferences.
 - Part 2 : Questions about adaptation choices.
 - Part 3 : Questions about the foresters and their forests.

Part 1 : Elicitation of preferences

Method

- Multiple Price List (Holt and Laury, 2002) : 10 lottery choices between two options.
- Measure of the preferences : number of left choices (the higher the number, the higher the aversion).

- 10 decisions presented sequentially using pie charts.
- Option 1 = safe; Option 2 = risky.
- Option A = risky; Option B = uncertain.

Parts 2 and 3 : Questions about adaptation choices and characteristics

Part 2 : Adaptation

- Question 1 : perception of CC
- Questions 2 and 3 : already modified the practices and/or planned to modify their practices

Part 3 : Characteristics

- Forest : private/public, area, composition, dominant tree species, management objectives.
- Forester : gender, age, income.

Results

Result : Perception of CC

Question : among the six proposed, please select the two truest answers from your own opinion.

- None of the forester don't believe in CC.
- Very few think that CC will have no impact \rightarrow in line with Yousefpour and Hanewinkel (2015).
- For 80% of our sample, CC is associated to an increase in the frequency and damage of storms.
- More than 60% think that CC favors the development of pathogens and insects.

Result : Elicitation of preferences

TABLE - Risk and uncertainty preferences

	Risk		Uncertainty	
	Average coef.	Nb of safe choices	Average coef.	Nb of risky choices
French (N = 49)	0.595	5.98	0.729	6.51
German (N = 39)	0.273	5.08	0.841	6.26
Total (N = 88)	0.453	5.58	0.779	6.40
Neutrality	-0.15 < r < 0.15	4	$0.9771 \le s < 1$	5

Risk

- Foresters are risk averse.
- French foresters are on average more risk averse than the German ones.

Uncertainty

- Foresters are uncertainty averse.
- No significant difference between French and German foresters.

Image: A math a math

Result : Willingness and intensity

Adaptation

- 88.6% of the foresters had already modified their practices in order to adapt to CC.
- 87.5% of them planned to modify their forestry practices in the near future.

No Adaptation

Among the 11.4% of foresters indicating that they have not adapted yet, and those indicating that they did not plan to adapt in a near future (12.5%), the main reason invoked is : "*I did not receive enough information to take a decision*".

Determinants of the willingness to adapt : logit regression

	Parameter	Stand. error	Sig.
Constant	19.432	6.615	0.003***
Nb of safe choices	-0.104	0.047	0.027**
Income	0.249	0.136	0.066**
Age	-0.023	0.011	0.041**
French	-0.448	0.259	0.084*
Pseudo R ² Mc Fadden		0.329	

TABLE – Significant variables of the logit

- The higher the risk aversion, the lower the probability to adapt.
- Being French reduces the probability to adapt.
- Older foresters are more reluctant to adapt.
- The wealthier the forester is, the higher the probability to adapt will be.

Determinants of the intensity of adaptation : Poisson count model

TABLE - Estimation of the parameters of the Poisson count model

	Parameter	Stand. error	Sig.
Nb of safe choices	-0.056	0.0332	0.091*
Nb of risky choices	0.016	0.0315	0.611
Age	-0.005	0.0062	0.417
French	-0.306	0.1467	0.037**
Private	0.175	0.2153	0.416

- The higher the forester's risk aversion, the lower the intensity of adaptation.
- Being French (as compared to German) has a significant and negative impact on the number of adaptation strategies selected.

Discussion and conclusion

Main results

- The forester with the higher willingness to adapt is young, rich, with a low degree of risk aversion, and is German.
- The forester with the higher intensity of adaptation is German and with a low degree of risk aversion.

 \hookrightarrow "Reluctance to change" : the risk of any change in the BAU is higher than the risk of CC impact in forestry.

Another results

- Income is significant on the willingness to adapt : interesting vector for public help.
- Uncertainty aversion never significant : strategy-dependent? uncertainty on the damage (not on the probability)?
- Being a French forester reduces both the willingness and the intensity of adaptation as compared to German : socio-economic and political contexts (Sousa-Silva et al., 2018).
- The lack of information hinders forester's adaptation : in line with previous studies (Yousefpour and Hanewinkel, 2015; Sousa-Silva et al., 2018).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Thank you

Acknowledgements :

This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the "Investissements d'Avenir" program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). We are grateful to Jens Abildtrup for his help on the econometric part of the manuscript.

References

- Andersson E, Keskitalo ECH (2018) Adaptation to climate change ? Why business-as-usual remains the logical choice in Swedish forestry. Global Environmental Change 48 :76-85.

- Blennow K, Persson J, Tomé M, Hanewinkel M (2012) Climate Change : Believing and Seeing Implies Adapting. PLoS ONE 7(11) : e50182.

- Bréda N, Brunette M (2019) Are 40 years better than 55? An analysis of the reduction of forest rotation to face drought event in a Douglas fir stand. Annals of Forest Science, 76:29.

- Brèteau-Amores S, Brunette M, Davi H (2018) An economic comparison of adaptation strategies towards a drought-induced risk of forest decline. Ecological Economics 164 :106294.

- Brunette M, Costa S, Lecocq F (2014) Economics of species change subject to risk of climate change and increasing information : a (quasi-) option value analysis. Annals of Forest Science 71(2):279-290.

- Brunette M, Foncel J, Kéré E (2017a) Attitude towards Risk and Production decision : An Empirical analysis on French private forest owners. Environmental Modeling and Assessment 22(6) :563-576.

- Brunette M, Couture S, Pannequin F (2017b) Is forest insurance a relevant vector to induce adaptation efforts to climate change? Annals of Forest Science 74:41.

- Eckel C, Grossman P (2008) Forecasting risk attitudes : an experimental study using actual and forecast gamble choices. Journal of Economic Behavior and Organization 68(1) :1-7.

- Hanewinkel M, Hummel S, Cullmann DA (2010) Modelling and economic evaluation of forest biome shifts under climate change in southwest Germany. Forest Ecology and Management 259(4) :710-719.

- Holt C, Laury S (2002) Risk aversion and incentive effects. American Economic Review 92(5) :1644-1655.

- Lidskog R, Sjödin D (2014) Why do forest owners fail to heed warnings? Conflicting risk evaluations made by the Swedish forest agency and forest owners. Scandinavian Journal of Forest Research 29(3) :275-282.

- Musshoff O, Maart-Noelck S (2014) An experimental analysis of the behavior of forestry decision-makers - the example of timing in sales decisions. Forest Policy and Economics 41 :31-39.

- Ogden A E, Innes JL (2009) Application of structured decision making to an assessment of climate change vulnerabilities and adaptation options for sustainable forest management. Ecology and Society 14(1) :11.

- Sauter P, Musshoff O, Mohring B, Wilhelm S (2016a) Faustmann vs. real options theory - an experimental investigation of foresters harvesting decisions. Journal of Forest Economics 24 :1-20.

- Sauter P, Milmann TB, Anastassiadis F, Musshoff O, Mohring B (2016b) To insure or not to insure ? Analysis of foresters willingness-to-pay for fire and storm insurance. Forest Policy and Economics 73 :78-89.

- Sauter P, Hermann D, Musshoff O (2018) Are foresters really risk-averse ? A multi-method analysis and a cross-occupational comparison. Forest Policy and Economics 95 :37-45.

- Sousa-Silva R, Verbist B, Lomba A, Valent P, Suskevics M, Picard O, Hoogstra-Klein MA, Cosofret VC, Bouriaud L, Ponette Q, Verheyen K, Muys B (2018) Adapting forest management to climate change in Europe : Linking perceptions to adaptive responses. Forest Policy and Economics 90:22-30.

- Yousefpour R, Hanewinkel M (2014) Balancing decisions for adaptive and multipurpose conversion of norway spruce (picea abies I. karst) monocultures in the black forest area of Germany. Forest Science 60(1):73-84.

- Yousefpour R, Hanewinkel M (2015) Forestry professionals' perceptions of climate change, impacts and adaptation strategies for forests in South-West Germany. Climatic Change 130 :273-286.