IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Hurtevent P. Coppin F. Gonze M.A. Calmon P. Nanba K. Onda Y. Thiry Y.

IRSN, France IRSN, France IRSN, France IRSN France IER/Fukushima U., Japan CRIED/U. Tsukuba, Japan Andra, France









How knowledge on K and <sup>133</sup>Cs biocycling

can be used to estimate <sup>137</sup>Cs root uptake

in Japanese cedar stands contaminated

by the Fukushima fallouts



AMORAD project



#### Context /Issues /Objectives

#### Why studying <sup>137</sup>Cs stable analogs recycling (K, <sup>133</sup>Cs)?

- Territories contaminated by atmospheric fallouts (Chernobyl, FDNPP accidents)
- ▶ <sup>137</sup>Cs half-life ~ 30 y X Forests High interception efficiency = persistence of products contamination
- Operationnal modeling needs for adressing Short <u>&</u> Long Term
- Short Term / Early stage ~ 5y > Dynamics mainly driven by competition between initial uptake &

depuration processes (cf. Gonze & Calmon, 2017)

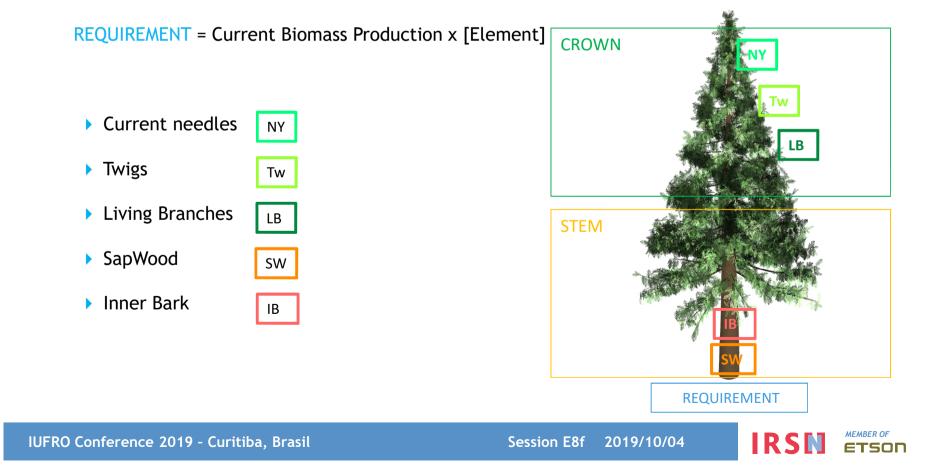
- Long Term / Apparent Steady State ~ Decades > Root Uptake is the major contributor to <sup>137</sup>Cs inventories
- ▶ FDNPP accident case ▶ equilibrium not reached ▶ How assessing the <sup>137</sup>Cs root uptake?
  - Similar behaviour of rCs stable analogs K & <sup>133</sup>Cs (e.g. Yoshida et al., 2004; Sombré et al., 1994)
  - Competition of K vs. Cs (cf. Zhu & Smolders, 2000)
  - Scarce <sup>133</sup>Cs contents data sets

#### ▶ OBJECTIVE

- Assessing the Root Uptake of both K & stable Cs
- > Defining <sup>133</sup>Cs discrimination factors for a process-based modeling relying on K biogeochemical

fluxes

#### M&Ms ► Flux calculation method

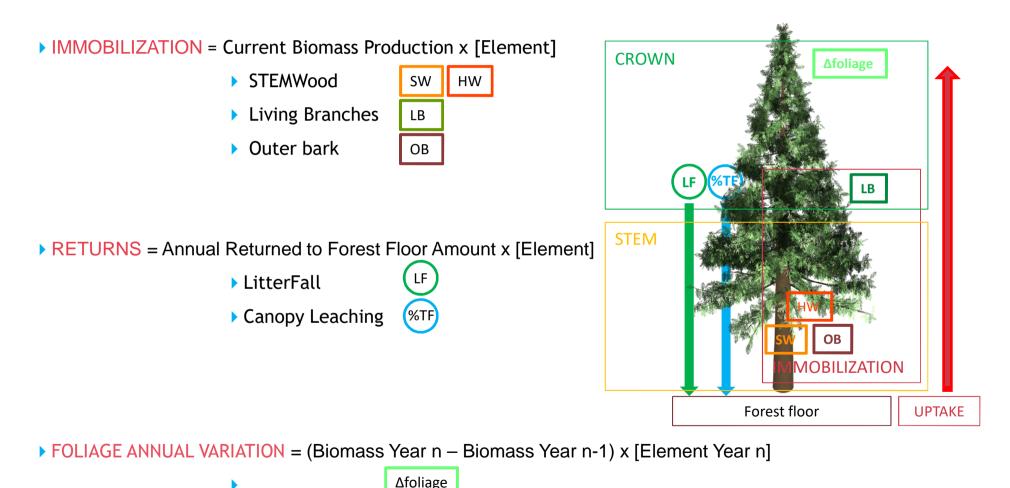

3

#### QUANTIFICATION OF THE BIOGEOCHEMICAL RECYCLING

- > Approach developed for <sup>137</sup>Cs by Goor & Thiry (2004) / derived from Cole & Rapp (1981)
- ANNUAL growing biomass **REQUIREMENT** is fed by **Root UPTAKE** & internal TRANSLOCATIONS

 $\mathbf{P} = \mathbf{U} + \mathbf{\Sigma}\mathbf{T}$ 

▶ REQUIREMENT (R) ▶ Total quantity of element mobilized by the current biomass production




#### M&Ms ▶ Flux calculation method

#### **ROOT UPTAKE**

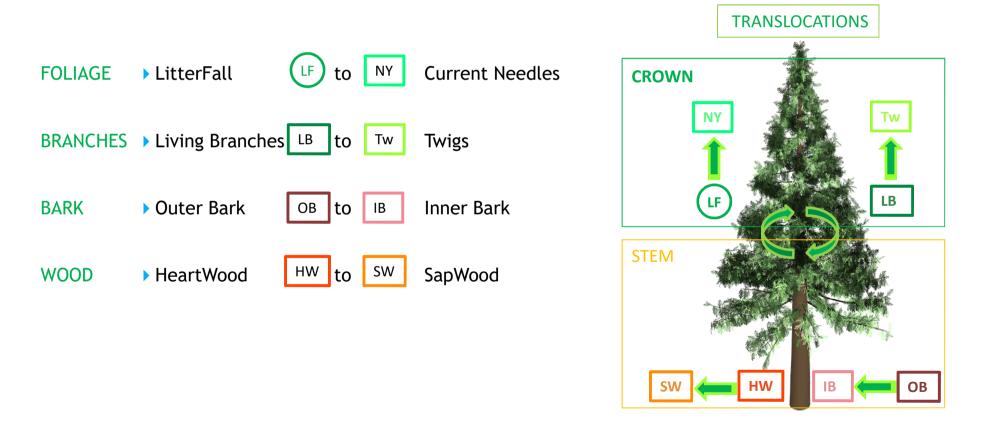
Root UPTAKE (U) • Quantity of elements taken up from the soil through absorption by roots

UPTAKE = IMMOBILIZATION + RETURNS + FOLIAGE ANNUAL VARIATION



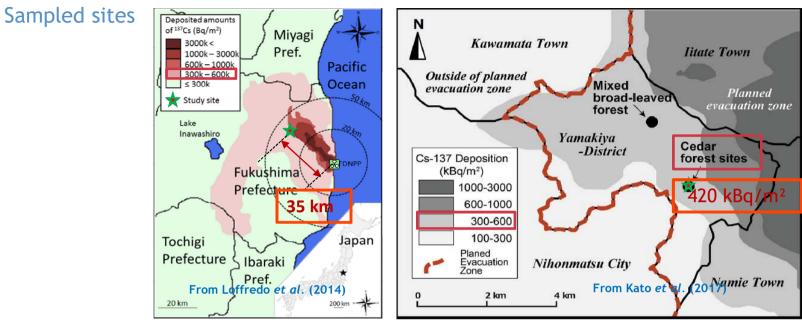


#### M&Ms ► Flux calculation method


#### INTERNAL TRANSLOCATIONS

• Internal TRANSLOCATIONS ( $\Sigma T$ ) • Remobilization of elements from senescing to corresponding

current biomass production


SOURCE - SINK relationship

TRANSLOCATION = Biomass (SENESCING organ) x ([Element CURRENT PROD° organ] - [Element SENESCING organ])





#### M&Ms ▶ Sites / Sampling / Biomass ▶ Coppin et al. (2016)



► C. japonica D. Don → Mature (MC) and Young (YC)

Japanese cedars stands

Sampling > 1 Tree per DBH equal size class > N=9

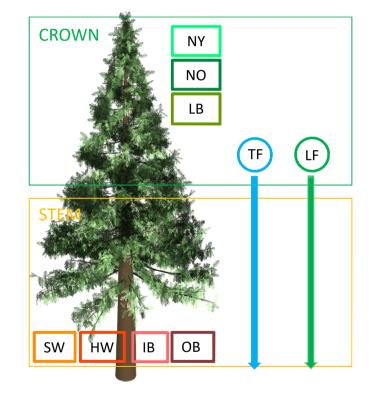
- Mid-November
- 2013 2.8 y after FDNPP releases
- ▶ 2014 ► 3.8 y
- ▶ 2016 ► 5.8 y
- ▶ 2018 ► 7.8 y

| Stand                                                  | MC<br>2013-2018 | YC<br>2013-2018 |
|--------------------------------------------------------|-----------------|-----------------|
| Stand age<br>years                                     | 33 - 38         | 17 - 22         |
| Stand density<br>stem ha <sup>-1</sup>                 | 800             | 2400            |
| Plot area<br>m <sup>2</sup>                            | 2900            | 2600            |
| DBH (Average)<br>cm                                    | 31.7 - 35.5     | 18.7 - 22.9     |
| Stand density<br>stem ha <sup>-1</sup>                 | 800             | 2400            |
| Height (Average)<br>m                                  | 22 - 23         | 14 - 16         |
| LAI (raw meas. 2013)<br>m <sup>2</sup> m <sup>-2</sup> | 4.2             | 10.3            |

6



#### M&Ms ▶ Sites / Sampling / Biomass ▶ Coppin et al. (2016)


#### Sampling

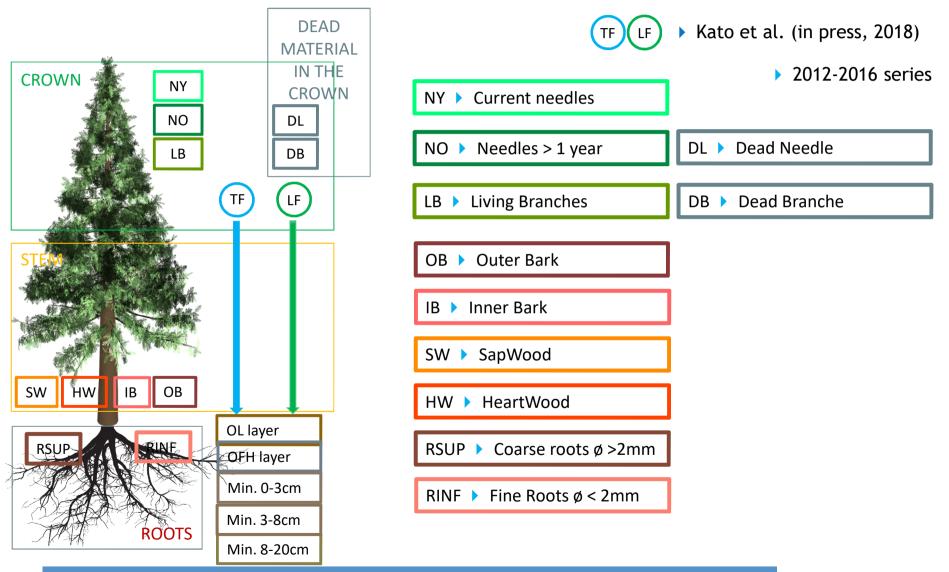
#### Organs/compartments to feed the RUT approach



• Kato et al. (in press, 2018)

> 2012-2016 series




| NY > Current needles | Tw 🕨 Twigs |
|----------------------|------------|
| NO Needles > 1 year  |            |
| LB Living Branches   |            |
|                      |            |
| OB 🕨 Outer Bark      | 1          |
| IB 🕨 Inner Bark      |            |
| SW 🕨 SapWood         |            |
| HW 🕨 HeartWood       |            |



#### M&Ms ▶ Sites / Sampling / Biomass ▶ Coppin et al. (2016)

#### Sampling

#### Complementary Organs/Compartments to feed the INVENTORIES calculation





#### M&Ms ▶ Supp. Data

#### Calculations based on observed data or literature

- Biomass stocks / annual increments (cf. Coppin et al., 2016)
  - ▶ Use of allometric relationships BM = a.DBH^b ▶ Lim et al. (2013)
  - **DBH** annual increment from biometrics on Wood Disk
  - ▶ No self-thinning taken into account over the study period
  - ► Dead material in crown ► allometric relationship BM = a.DBH^b ► (Yoshida & Hijii, 2006) MC/

regression from literature data (N=9) YC

→ Fine roots → regresssion from literature data → Fujimaki et al. (2007)

## Current meedles production Lots of calculations

▶ Use of mean LF amounts from Kato et al. (in press, 2018) over 2012-2016 series

& Literature review

▶ Regular turnover equation NY = LFNeedles - ∆foliage

- ▶ Needles turnover MC-YC is 4-5 years vs. 4.8 years mean value from Kiyono & Akama (2016)
- ▶ Returns to forest floor

Mean LF (kg/m<sup>2</sup>) & TF (L/m<sup>2</sup>) from 2012-2016 series (Kato et al., In press, 2018)

- ► RUT approach
- ▶ No trends over the study period for K & <sup>133</sup>Cs contents in organs were observed (p-values > 0.05 /t)
  - ▶ use of mean values (± 1 SD) for K & <sup>133</sup>Cs fluxes (2013-2018)
- ▶ Specific adaptation for *C. japonic*a = Tw integrated in NY ▶ No LB to Tw (T) flux (not taken into account)



#### M&Ms ► Hypotheses

#### Derived values for Canopy Leaching %TF

No observation for K contents in the TF



▶ TF+SF from Ohrui & Mitchell (1996) with SF contribution corrected from Sase et al. (2008)

# No observation for [Element] contents in TF **%TF Calculation Hypotheses to further** discuss

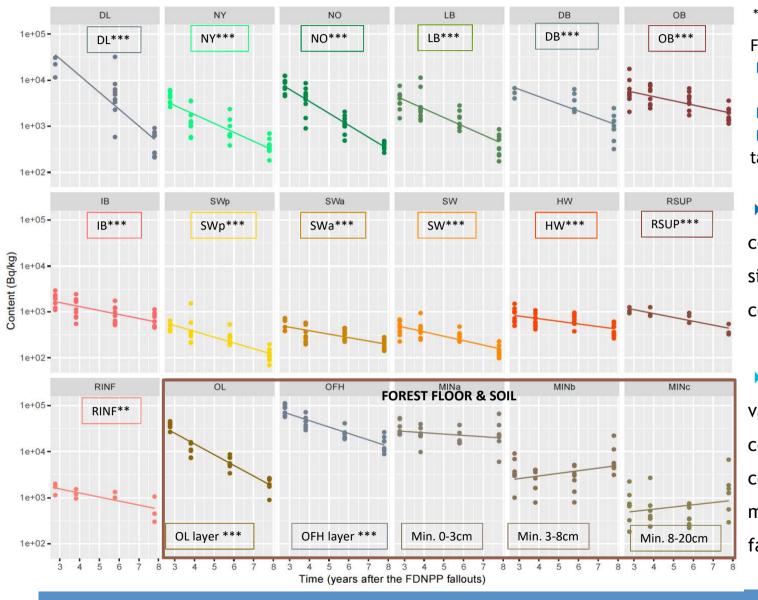
▶ No observation for <sup>133</sup>Cs contents in the TF Cs



▶ Use of TF vs. LF <sup>137</sup>Cs proportions after 1 needles lifespan ~ 5 y (year 2016 from Kato et al., In press)

vs. ~ 0.3 for rCs (Yoschenko et al., 2018), ~ 0.5 for rCs (Goor & Thiry, 2004) ▶ TF/LF = 0.4 Implies stabilized ratio over time

▶ Application of DD/WD/%TF fractionation from Wu et al. (1996)


▶ Implies Wu's et al. (1996) WD/DD/%TF fractionation is constant over time and Japan areas

▶ Implies same K and <sup>133</sup>Cs are in constant proportion in WD and DD



#### <sup>137</sup>Cs contents & dynamics

#### [<sup>137</sup>Cs] Decreasing trends over the study period 2013-2018 / <u>MC</u> stand



Slopes significance
\*\*\* p-value < 0.001



\*\* p-value < 0.01

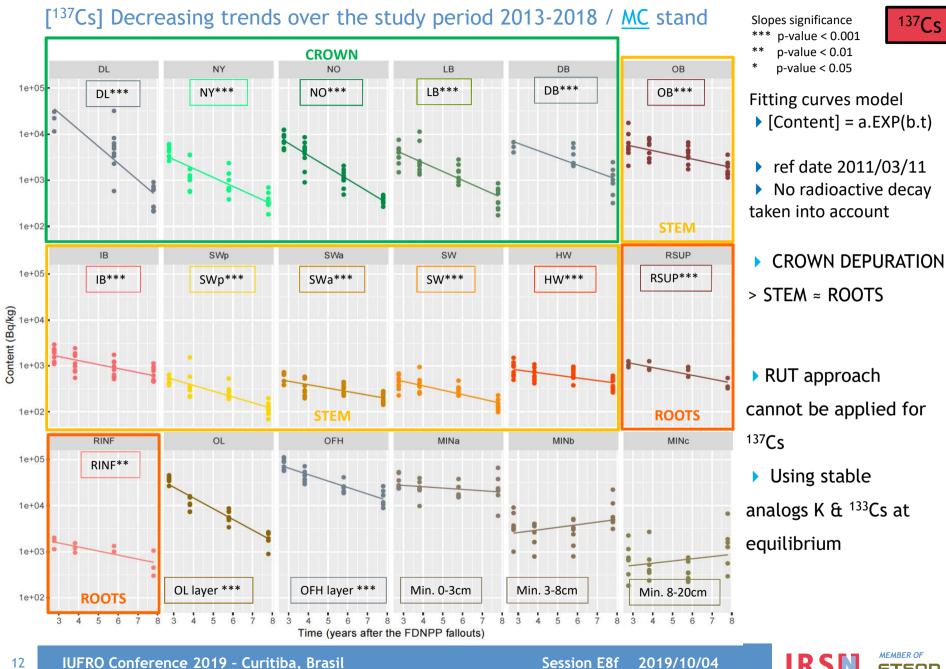
p-value < 0.05

Fitting curves model
 [Content] = a.EXP(b.t)

ref date 2011/03/11

No radioactive decay taken into account

Decrease of <sup>137</sup>Cs
 contents are all
 significant in biomass
 compartments

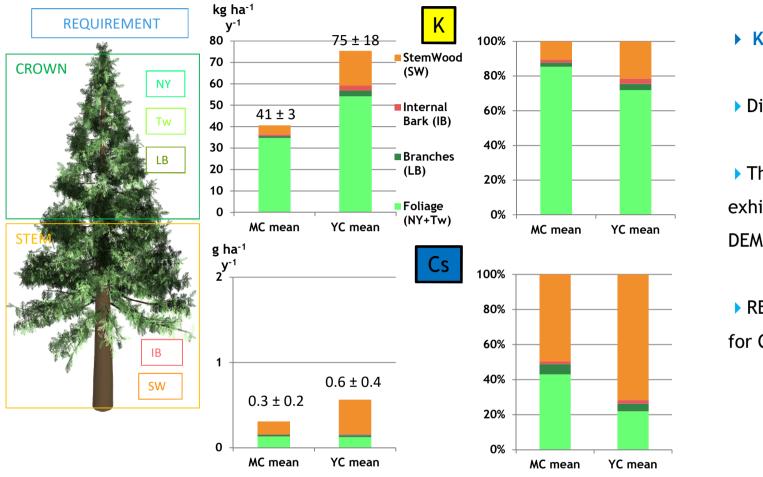

 Higher dispersion of values in CROWN
 compartments > The
 compartments the
 most exposed to
 fallouts

IR

MEMBER OF

ETSON

#### <sup>137</sup>Cs contents & dynamics




MEMBER OF IRS ETSON

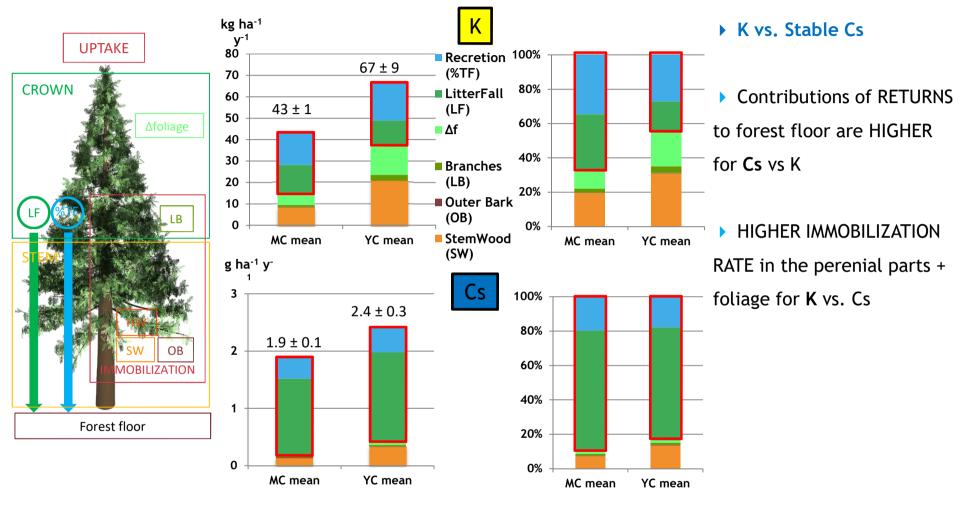
137**Cs** 

12

#### REQUIREMENT

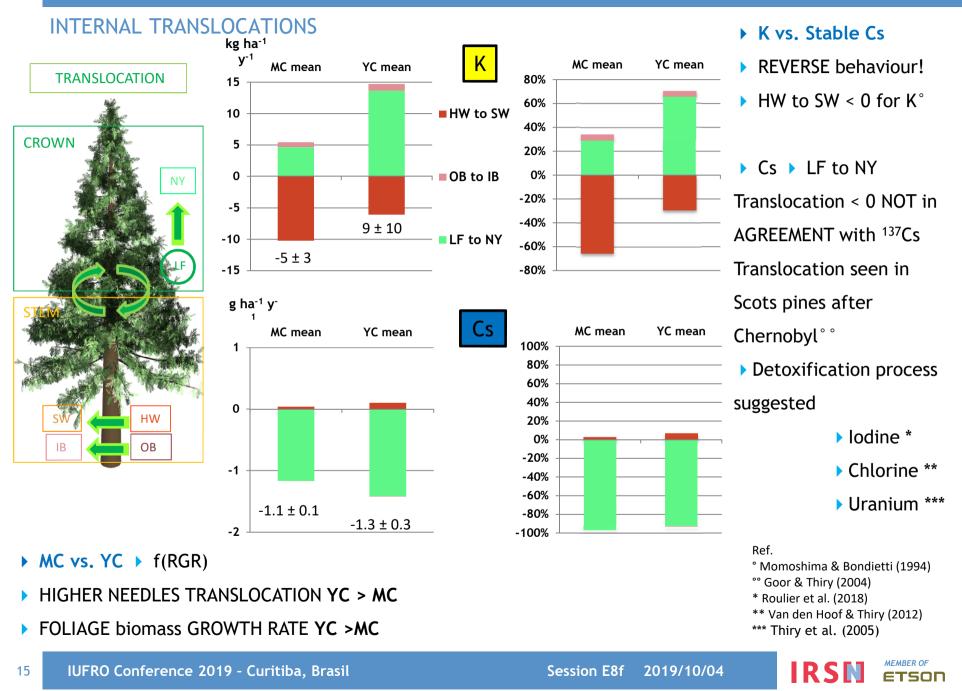


- K vs. Stable Cs
- ▶ Distribution  $K \neq Cs$


 The FOLIAGE growth exhibits the HIGHEST K
 DEMAND

REVERSE contributions for Cs FOLIAGE DEMAND

- MC vs. YC → f(RGR)
- Global HIGHER DEMAND for YC vs MC
- HIGHER SW biomass GROWTH RATE YC vs MC




#### **ROOT UPTAKE**



- ► MC vs. YC ► f(RGR)
- SIMILAR fluxes of RETURNS to forest floor (LF, %TF) + SIMILAR CONTRIBUTIONS between stands MC & YC
- ▶ HIGHER UPTAKE YC vs. MC ▶ HIGHER SW biomass GROWTH RATE in the YC stand





#### Balance between REQUIREMENT and RECYCLING FLUXES (U & $\Sigma$ T)

|                         |            | K kg ha <sup>-1</sup> y <sup>-1</sup> |                | <b>Cs</b> g      | ha <sup>-1</sup> y <sup>-1</sup> |
|-------------------------|------------|---------------------------------------|----------------|------------------|----------------------------------|
|                         |            | MC                                    | YC             | MC               | YC                               |
| REQUIREMENT             | R          | <b>41</b> ± 3                         | <b>75</b> ± 18 | <b>0.3</b> ± 0.2 | <b>0.6</b> ± 0.4                 |
| UPTAKE                  | U          | <b>43</b> ± 1                         | 67 ± 9         | <b>1.9</b> ± 0.1 | <b>2.4</b> ± 0.3                 |
| TRANSLOCATION           | ΣΤ         | -5 ± 3                                | <b>9</b> ± 10  | -1.1 ± 0.1       | -1.3 ± 0.1                       |
| <b>RECYCLING Fluxes</b> | U + Σ T    | <b>38</b> ± 3                         | <b>76</b> ± 18 | <b>0.8</b> ± 0.2 | 1.1 ± 0.4                        |
| BALANCE (               | U + Σ T)/R | <b>0.95</b> ± 0.1                     | 1.01 ± 0.1     | 3.0 ± 1.1        | 2.3 ± 0.8                        |

- K cycle is balanced  $(U + \Sigma T)/R \sim 1$ 
  - Common situation for conifers \*
  - A major nutrient reference cycle
  - MC & YC > U > T > vs. T> U for
  - K in Spruce, Scots pines\*
  - Translocation to HW  $(T_{K} flux < 0)$
  - C. japonica species effect?

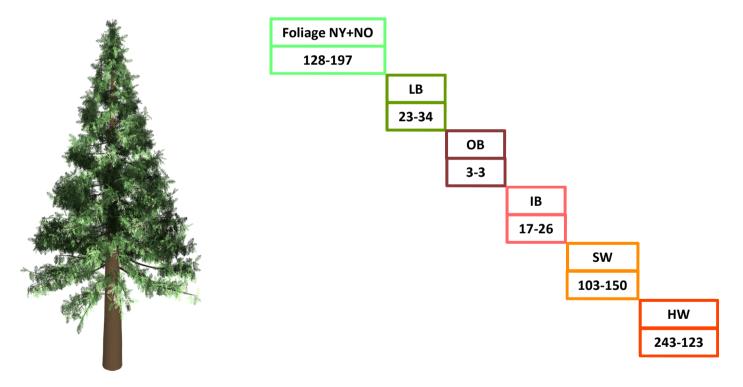
- Cs cycle is unbalanced  $(U + \Sigma T)/R \sim 2-3$ 
  - <sup>133</sup>Cs cycle is imbalanced due to excess

of Returns to forest floor and translocation

- Factor 2 observed for Beech with same flux distributions \*\*
- Specific recycling for Non Essential

#### Elements?

#### Ref.


\* Cole & Rapp (1981), Dambrine et al. (1995), Goor & Thiry (2004 \*\* M. Roulier (2018) PhD manuscript, unpub. Results



#### K transfer rates



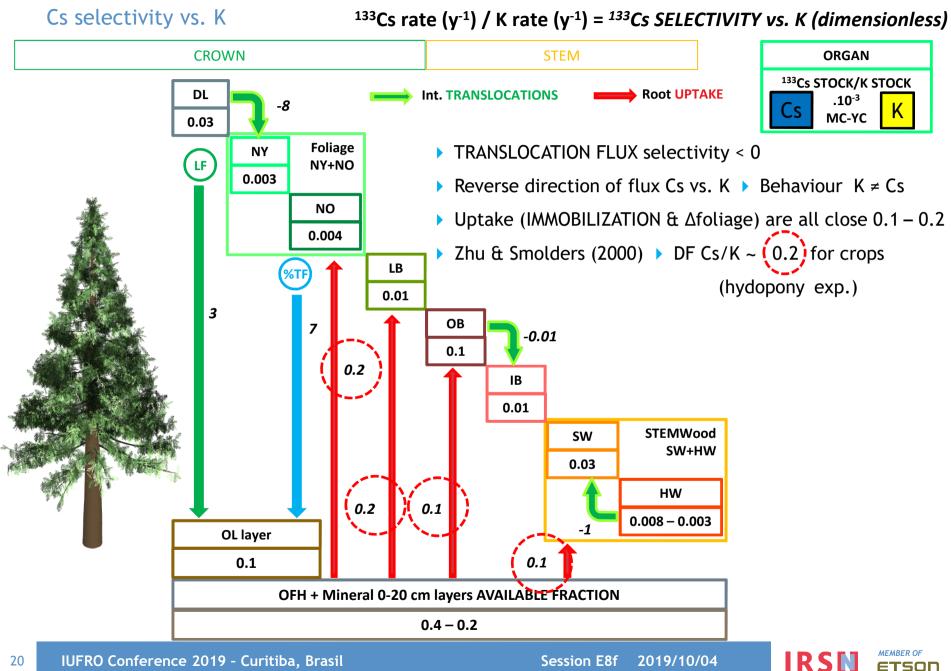
• Tree is described according to an Interaction Matrix



FLUX (kg ha<sup>-1</sup> y<sup>-1</sup>) / STOCK (kg ha<sup>-1</sup>) = ANNUAL TRANSFER RATE ( $y^{-1}$ )



#### Fluxes within stands


| K transfer rat      | es FLUX (k                             | g ha <sup>-1</sup> y <sup>-1</sup> ) / STOCK (kg ha <sup>-1</sup> ) = AN                                                                 | NUAL TRANSFER RATE (y-1)    |
|---------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                     | CROWN                                  | STEM                                                                                                                                     |                             |
| UPTAKE (IMMOI       | BILIZATION & Afoliage) rates 1         | from the soil available fraction                                                                                                         | STOCK MC-YC                 |
| COOCH3NH4 ex        | traction (exchangeable pool)           |                                                                                                                                          | Root UPTAKE                 |
| 2-12 % soil K bu    | udget                                  | No obvious differer                                                                                                                      | nce MC vs YC rates          |
|                     | Foliage NY+NO                          | Use of r                                                                                                                                 | nean values                 |
|                     | 128-197                                | FOLIAGE is the mai                                                                                                                       | n SINK                      |
|                     |                                        | STEMWood is the m                                                                                                                        | ain SINK for IMMOBILIZATION |
|                     | OL layer<br>3<br>OFH + Mineral 0-20 cm | LF ~ %TF<br>OB<br>3-3<br>IB<br>17-26<br>SW STEMWood<br>SW+HW<br>103-150<br>HW<br>243-123<br>O.06<br>Iayers AVAILABLE FRACTION<br>32 - 83 |                             |
| 18 IUFRO Conference | ce 2019 - Curitiba, Brasil             | Session E8f 2019/10/                                                                                                                     |                             |

#### Fluxes within stands

| Cs transfer ra               | tes FI                                                                                                          | .UX (g ha <sup>-</sup> | <sup>1</sup> y <sup>-1</sup> ) / STOCK (g ha <sup>-1</sup> ) = ANNUAL TRANSFER RATE (y <sup>-1</sup> ) |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|--|--|
|                              | CROWN                                                                                                           |                        | STEM ORGAN CS                                                                                          |  |  |
| UPTAKE (IMMOE                | UPTAKE (IMMOBILIZATION & Δfoliage) rates fr                                                                     |                        |                                                                                                        |  |  |
| COOCH3NH4 ext                | COOCH3NH4 extraction (exchangeable pool)                                                                        |                        | Root UPTAKE                                                                                            |  |  |
| 1-6 % soil <sup>133</sup> Cs | budget                                                                                                          |                        | No obvious difference MC vs YC stocks except HW                                                        |  |  |
|                              | Foliage NY+NO                                                                                                   |                        | No obvious difference MC vs YC rates                                                                   |  |  |
|                              | 0.6                                                                                                             |                        | Use of mean values                                                                                     |  |  |
|                              |                                                                                                                 | LB                     | <ul> <li>FOLIAGE is the main SINK</li> <li>STEMWood is the main SINK for IMMOBILIZATION</li> </ul>     |  |  |
|                              | ĬĬ                                                                                                              | 0.4                    |                                                                                                        |  |  |
|                              | 2.3 0.6                                                                                                         | OB<br>0.2              | ▶ LF > % IF                                                                                            |  |  |
|                              | 0.1                                                                                                             |                        | -<br>IB                                                                                                |  |  |
|                              |                                                                                                                 |                        | 0.1                                                                                                    |  |  |
|                              |                                                                                                                 |                        | SW STEMWood<br>SW+HW                                                                                   |  |  |
| CONTRACT DESC                | k –                                                                                                             |                        | 3.8<br>HW                                                                                              |  |  |
| <sup>3</sup> 7               | 0.000                                                                                                           | 1 0.03                 | 1.9 - 0.4                                                                                              |  |  |
|                              | OL layer                                                                                                        |                        |                                                                                                        |  |  |
|                              | 0.2                                                                                                             |                        | 0.02                                                                                                   |  |  |
|                              | OFH + Mineral 0-20 cm layers AVAILABLE FRACTION                                                                 |                        |                                                                                                        |  |  |
| l                            | 58 - 16                                                                                                         |                        |                                                                                                        |  |  |
| 19 IUFRO Conference          | 19       IUFRO Conference 2019 - Curitiba, Brasil       Session E8f       2019/10/04       IRSN       MEMBER OF |                        |                                                                                                        |  |  |



#### Fluxes within stands



#### Conclusion & prospects

#### Behaviour of stable analogs K & <sup>133</sup>Cs

<sup>133</sup>Cs and K exhibit different dynamics

- K is at equilibrium  $U + \Sigma T = R$
- ► <sup>133</sup>Cs is recycled in excess  $U + \Sigma T = 2 R$
- Detoxification process for a non essential element?

#### Is the <sup>133</sup>Cs a good surrogate for assessing the rCs root uptake?

▶ <sup>133</sup>Cs selectivity coefficients vs. K

- Hypothesis on <sup>133</sup>Cs Canopy leaching
- Feeding of <sup>137</sup>Cs transfers process-based modeling parameterization relying on K BGC fluxes
- Assessment through model run
- Selectivity is uncertain (SD ranges 60-80% value)
- Observations datasets of paired stable analogs needs

#### Remaining questions & prospects

- Monitoring of <sup>137</sup>Cs still required... ... in parallel with K and 133Cs observations
  - ... for comparing modeling outputs with observations f(t)
- Roots ~10-25% rCs inventory in biomass (2013-2018) Neglectible?
  - What about tranlocations TO and FROM roots?





#### Acknowledgements

- H. Tsukada, Y. Wakiyama & V. Yoschenko from IER / U. Fukushima
- M. Kurihara, N. Loffredo, Z.H. Saidin & T. Taniguchi from CRIED / U. Tsukuba
- L. Carasco, D. Orjollet, L. Garcia-Sanchez, C. Simonucci, A. Martin-Garin, D. Mourier, F. Giner,
- O. Diez & A. Julien from IRSN

