Microbial enzymatic activities and community-level physiological profiles (CLPP) in subsoil layers are altered by harvest residue management practices in a tropical *Eucalyptus grandis* plantation

François Maillard¹, Valentin Leduc¹, Cyrille Bach¹, José Leonardo de Moraes Gonçalves⁴, Fernando Dini Andreote⁴, Laurent Saint-André⁵, Jean-Paul Laclau³, Marc Buée¹, Agnès Robin^{2, 3, 4}

¹Université de Lorraine, INRA, IAM, F-54000 Nancy, France ²CIRAD, UMR Eco&Sols, 13418-900 Piracicaba SP, Brazil ³Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France ⁴ESALQ, Univ São Paulo, 3418-900 Piracicaba SP, Brazil ⁵INRA UR 1138 Biogéochimie des Ecosystèmes Forestiers, Centre INRA de Nancy, Champenoux

Harvest residue management is a key issue for the sustainability of *Eucalyptus* plantations established on poor soils. Soil microbial communities contribute to soil fertility by the decomposition of the organic matter (OM), but little is known about the effect of whole-tree harvesting (WTH) in comparison to stem only harvesting (SOH) on soil microbial functional diversity in *Eucalyptus* plantations.

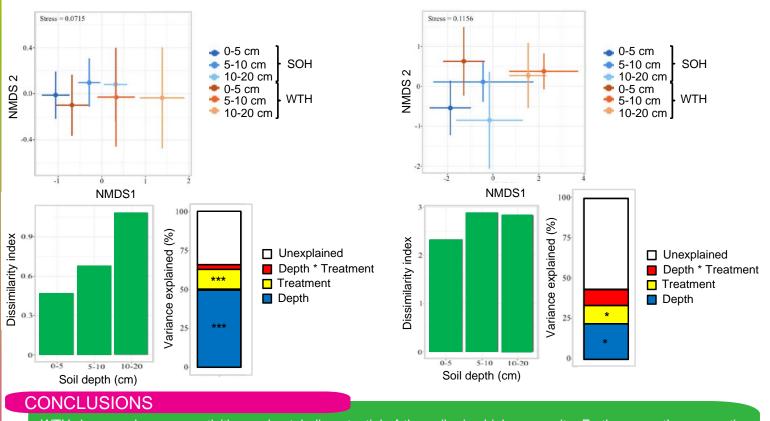
We studied the effects of harvest residue management (branches, leaves, bark) of *Eucalyptus grandis* trees on soil enzymatic activities and community-level physiological profiles (CLPP) in a Brazilian plantation.

This work was published in **Maillard** *et al.*, 2018. Microbial Ecology, 78:528-533

- Itatinga (SP), Brasil (part of SOERE F-ORE-T)
- Planted in 2012 (4-year-old)
- Rainfall: 1360 mm/year (sub-tropical climate)
- Oxisols (20% Clay)

Harvest residue experimentation

2 treatments:


- Stem-Only Harvesting (SOH)
- Whole-Tree Harvesting (WTH)

3 depths sampled: 0-5 cm; 5-10 cm; 10-20 cm

Methods

- Enzymatic assay (ß-glucosidase, cellobiohydrolase, xylosidase, glucuronidase, N-acetylglucosaminidase and acid phosphatase)
- Physiological profile approach (CLPP) assay = BIOLOG Ecoplates

Physiological profile (CLPP) assay

WTH decreased enzyme activities and catabolic potential of the soil microbial community. Furthermore, these negative effects on soil functional diversity were mainly observed below the 0-5 cm layer (5-10 and 10-20 cm), suggesting that WTH can be harmful to the soil health in these plantations.

Copyright © 2019. Agnès Robin agnes.robin@cirad.fr

Enzymatic assay