

Centre d'enseignement et de recherche en foresterie de Sainte-Foy inc.

Analyse comparative de modèles de hauteur de canopée haute précision : imagerie satellitaire stéréo/tri-stéréo, lidar, drone et *in situ*

> Mathieu Varin, M.Sc.¹ Anne-Marie Dubois, B.Sc., tech. géom.¹ Raphaël Gadbois-Langevin, M.Sc.¹³ Bilel Chalghaf, Ph.D.²

> > 20 septembre 2022

Colloque TRIDIFOR – Méthodes innovantes d'analyse de données 3D en forêt

1. CERFO 2. MELCC 3. Cégep Limoilou

www.cerfo.qc.ca

Contexte du projet

• Défis

Plusieurs études portent sur l'extraction d'un modèle numérique de surface (MNS) photogrammétrique satellitaire pour mesurer l'altitude du sol

Très peu portent sur la hauteur de la canopée (MHC)

Contexte du projet

- Facteurs limitants
 - Topographie
 - Netteté de l'image
 - Résolution spatiale
 - Densité/hauteur
 - Contraste avec le sol

Plantation c.

forêt naturelle

- Occlusion des couronnes

Contexte du projet

• But du projet

Évaluer la précision de modèles de hauteur de canopée (MHC) aux échelles de l'arbre individuel et du micro-peuplement à partir :

- 1- Données lidar
- 2- Images satellitaires stéréos et tri-stéréos
- 3- Images de drone
- Approche utilisée

L'étude comporte une analyse comparative des techniques et logiciels photogrammétriques, afin de déterminer l'approche la plus efficace et précise

1. Acquisition des données

5

(Riedler, 2017)

6

1. Acquisition des données

• Imagerie satellitaire WorldView-3, 26 juil. 2019 (30 cm, 8 bandes)

(Kerle, 2011)

Paramètres	Image 1	Image 2	Image 3
Data at hours (firstLingTime)	2019-07-26	2019-07-26	2019-07-26
Date et heure (Histhine Thile)	16:00:44	16:01:08	16:01:35
Solar azimuth (minSunAz)	152,9°	153,0°	153,2°
Solar elevation (minSunEl)	61,8°	61,8°	61,8°
Satellite azimuth (minSatAz)	37,5°	99,5°	169,2°
Satellite elevation (minSatEl)	71,2°	82,0°	69,9°
Area off nadir (minOffNadirViewAngle)	16,8°	7,2°	17,6°
Cloud cover	3.9%	2.8%	2.2 %

1. Acquisition des données

Panchromatique

Multispectral

1. Acquisition des données

• Survols drone

	Vol	Superficie	Nbr d'images*	Date	Plas
3	1	±34 ha	8 000	3 sept. 2019	N.C
	2	±65 ha	15 000	3 sept. 2019	
22.2	Starts of LAN	ALL ALL ALL ALL	A Sector		

Spectre	Longueur d'onde	Longueur d'onde	Résolution
specie	(étendue nm)	(moyenne nm)	spatiale moyenne
Bleu	465-585	475	
Vert	550-570	560	
Rouge	663-673	668	5.2 cm
Red-edge	712-722	717	
Proche infrarouge	820-860	840	
SWIR	8000-14000	11000	81 cm

1. Acquisition des données

• Survols drone

1. Acquisition des données

- Données lidar aéroporté
 - 2018
 - Moyenne 2,5 pts/m² au sol
 - Acquisition par MFFP*

1. Acquisition des données

• Données terrain

Sorties terrain réalisées les 3 sep. et 8 oct. 2019

		Élévation					
		Moins de 7 m	7-15m	15-20m	Plus de 20 m	Total	
Rés	sineux	2	5	2	4	13	
Feu	ıillu	2	6	13	10	31	0.0
Tot	al	4	11	15	14	44	
<u>}</u>		331	1,	3 m ↓ http	os://www.irlsupplies.com/0/product	t.htm?pid=946058	- &cat=552

2. Préparation des modèles numériques de surface

• Sommaire des données

Source	Logiciel de traitement	Résolution	Bandes disponibles	Données en sortie
Lidar* (.las)	ArcMap 10.7	50 cm		1 MNS et 1 MNT
Satellitaire (Stéréo)	Correlator3D	50 cm	8	3 MNS (1 par couple)
Satellitaire (Tri-stéréo)	Correlator3D	50 cm	8	1 MNS
Drone	Pix4D	5 cm	5	2 MNS (1 par vol)

3. Segmentation

• Création de micro-peuplements

Segmentation du territoire

- Intrant : MHC lidar moyen
- > Algorithme « Segment Mean Shift »
- Résultats : Polygones de hauteur de canopée similaire

4. Extraction des MHC

5. Estimation de l'erreur

• Erreur quadratique moyenne (RMSE) à l'arbre près et par micro-peuplement

$$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (\widehat{H}_i - H_i)^2}{N}}$$

 \hat{H}_i : hauteur moyenne estimée par le modèle pour le polygone i H_i : hauteur moyenne issue du lidar pour le polygone i N: nombre total de polygones

- Régression linéaire à partir de plusieurs variables de classification d'images
 - Analyse de corrélation entre les variables
 - Procédure Stepwise pour identifier les variables significatives

A. Résultats - Profils

B. Résultats - MHCs vs MHC lidar

• Analyse par micro-peuplements

Plateforme	Images utilisées	RMSE (m)	Écart moyen (m)
Satellite	1,2,3	1,2	1,1
Satellite	1,2	1,3	1,0
Satellite	1,3	1,5	0,8
Satellite	2,3	2,6	2,2
Drone	Toutes	1,5	1,2

B. Régression linéaire

• Analyse par micro-peuplements

• Réalisé à partir du MHC triplet stéréo

• Modèle linéaire résultant : Mi

• Erreur moyenne :

Modèle	RMSE (m)	Écart- moyen (m)
Tri-stéréo	0,9	0,7

B. Résultats MHC vs MHC drone

• Analyse par micro-peuplements

Plateforme	Images utilisées	RMSE (m)	Écart moyen (m)
Satellite	1,2,3	1,3	1,0
Satellite	1,2	1,8	1,4
Satellite	1,3	1,3	1,1
Satellite	2,3	2,1	1,7
Lidar		1,5	1,2

C. Résultats MHC vs données terrain

• Analyse par arbre individuel

Plateforme	Images utilisées	RMSE (m)	Écart moyen (m)	RMSE prédict. (m)	Écart moyen prédict. (m)
Satellite	1,2,3	3,4	2,5	2,8	2,1
Satellite	1,3	2,8	2,1	2,4	1,9
Lidar		2,0	1,7	2,0	1,6
Drone		2,0	1,6	2,0	1,5

Conclusion

Proporton d'ombre

1.00

Conclusion

Proportion végétation basse Distance à l'ombre Évolution de l'erreur quadratique moyenne en fonction du ratio d'ombre par Proportion de végétation basse par polygone en fonction de la proportion d'ombre polygones 0 0 0 0.6 3.0 0 0 000 7.5 7.5 8 80.4 2.0 0.2 1.5 0 25 75 50 0.0 -Ratio d'ombre (%) 0.75 0.00 0.25 0.50

Recommandations

- Masquer les nuages
- Utiliser uniquement deux images satellitaires (stéréo) semble suffisant pour les peuplements matures
- Les MHCs drone et lidar sont très similaires; le drone est une bonne alternative
- Comparaison de hauteur de la végétation basse; lidar beaucoup plus performant
- Investiguer l'impact de l'angle de prise de vue des images satellites

Partenaires

Groupe Système Forêt Spécialistes en géomatique

Natural Resources Ressources naturelles Canada Canada

Forêts, Faune et Parcs QUÉDEC * *

Annexes

Résultats territoire d'étude Lac Saint-Jean - peuplements résineux I. MNS non filtrés

Comparaison pour les différents logiciels, résolutions spatiales et bandes utilisées

Résolution			RMSE (m)		
spatiale (m)	Logiciel	Bandes	MNS	MNS	MNS
			MFFP	max	moyen
0,5	Correlator3D	8 bandes	1,98	1,53	1,44
0,5	Correlator3D	Panchromatique	2,04	1,10	1,00
0,5	PCI	8 bandes	4,80	4,60	4,56
0,5	PCI	Panchromatique	1,94	1,14	1,02
0,5	PCI	3 bandes	2,65	2,26	2,22
1	Correlator3D	8 bandes	1,87	1,21	0,98
1	Correlator3D	Panchromatique	2,11	1,44	1,05
1	PCI	8 bandes	4,74	4,54	4,50
1	PCI	Panchromatique	1,75	1,16	1,14
1	PCI	3 bandes	2,65	2,26	2,21
2	Correlator3D	8 bandes	1,99	3,42	0,97
2	Correlator3D	Panchromatique	1,98	3,35	1,24
2	PCI	8 bandes	4,83	5,51	4,59
2	PCI	Panchromatique	1,76	3,15	1,14
2	PCI	3 bandes	2.64	3,75	2.20

II. MNS filtrés 50 cm

Comparaison pour les différents logiciels, résolutions spatiales et bandes utilisées pour les MNS <u>filtrés</u> à 50 cm

Logiciel	Bandes	Filtre	RMSE (m)
Correlator3D	8 bandes	MNS MFFP	1,61
Correlator3D	Panchromatique	MNS MFFP	1,77
PCI	8 bandes	MNS MFFP	1,90
PCI	Panchromatique	MNS MFFP	1,68
PCI	3 bandes	MNS MFFP	1,84
Correlator3D	8 bandes	MNS moyen	0,89
Correlator3D	Panchromatique	MNS moyen	0,84
PCI	8 bandes	MNS moyen	1,09
PCI	Panchromatique	MNS moyen	1,05
PCI	3 bandes	MNS moyen	1,21
Correlator3D	8 bandes	MNS max	0,99
Correlator3D	Panchromatique	MNS max	0,93
PCI	8 bandes	MNS max	1,20
PCI	Panchromatique	MNS max	1,17
PCI	3 bandes	MNS max	1,30

III. MNS filtrés 1m

Comparaison pour les différents logiciels, résolutions spatiales et bandes utilisées pour les MNS <u>filtrés</u> à 1 m

Logiciel	Bandes	Filtre	RMSE (m)
Correlator3D	8 bandes	MNS MFFP	1,72
Correlator3D	Panchromatique	MNS MFFP	1,98
PCI	8 bandes	MNS MFFP	1,91
PCI	Panchromatique	MNS MFFP	1,70
PCI	3 bandes	MNS MFFP	1,85
Correlator3D	8 bandes	MNS moyen	0,88
Correlator3D	Panchromatique	MNS moyen	1,03
PCI	8 bandes	MNS moyen	1,10
PCI	Panchromatique	MNS moyen	1,07
PCI	3 bandes	MNS moyen	1,22
Correlator3D	8 bandes	MNS max	1,14
Correlator3D	Panchromatique	MNS max	1,44
PCI	8 bandes	MNS max	1,30
PCI	Panchromatique	MNS max	1,11
PCI	3 bandes	MNS max	1,28

IV. MNS filtrés 2m

Comparaison pour les différents logiciels, résolutions spatiales et bandes utilisées pour les MNS <u>filtrés</u> à 2 m

Logiciel	Bandes	Filtre	RMSE (m)
Correlator3D	8 bandes	MNS MFFP	1,87
Correlator3D	Panchromatique	MNS MFFP	1,92
PCI	8 bandes	MNS MFFP	1,92
PCI	Panchromatique	MNS MFFP	1,72
PCI	3 bandes	MNS MFFP	1,85
Correlator3D	8 bandes	MNS moyen	0,93
Correlator3D	Panchromatique	MNS moyen	1,24
PCI	8 bandes	MNS moyen	1,08
PCI	Panchromatique	MNS moyen	1,06
PCI	3 bandes	MNS moyen	1,19
Correlator3D	8 bandes	MNS max	3,28
Correlator3D	Panchromatique	MNS max	3,25
PCI	8 bandes	MNS max	3,27
PCI	Panchromatique	MNS max	3,08
PCI	3 bandes	MNS max	3,20