
1

Apprentissage par transfert pour 
discriminer le bois/feuille des Unmanned 

aerial vehicle Laser Scanning (ULS)
PhD student:

Yuchen BAI

Supervisor:
Jean-Baptiste DURAND

Grégoire VINCENT
Florence FORBES



Outline
❏ Introduction

❏ Three identified questions

❏ Prototype model 

❏ Perspectives

2



❏ Airborne Laser Scanning (ALS) :

❏ RIEGL LMSQ780

❏ point density : ~70/m2 , pulse density : ~40/m2

❏ Terrestrial Laser Scanning (TLS):

❏ RIEGL VZ-400

❏ point density : >200,000/m2 , pulse density : >200,000/m2

❏ Unmanned aerial vehicle (UAV) Laser Scanning (ULS):

❏ RIEGL miniVUX-1UAV

❏ point density : >750/m2 , pulse density : >500/m2

Introduction

Figure 1. Leaf Area Index (LAI)
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The leaf area density (LAD) is defined as the total 
one-sided leaf area of photosynthetic tissue per unit 
canopy volume. The Leaf area index (LAI) is then 
derived by integrating the leaf area density over the 
canopy height. It corresponds to the one sided leaf 
area per unit horizontal ground surface area.



Figure 2.  LiDAR (Light Detection and Ranging) in a cuboid, 20 m 𝗑 20m 𝗑 50m, 
“More is different” -- P. W. Anderson

(a)  Terrestrial Laser 
Scanning (TLS)

(b)  Unmanned Aerial Vehicle 
(UAV) Laser Scanning (ULS)

(c)  Aerial Laser Scanning 
(ALS)
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Three identified questions

❏ How to do semantic segmentation (wood-leaf discrimination) on ULS data?

❏ TLS -> dense, small footprint and fewer mixed points

❏ no good approach for drone data (Unmanned aerial vehicle Laser Scanning (ULS))

❏ How to get a more accurate and unbiased point estimator of vegetation 
density?

❏ clumping (aggregate distribution of leaves), 

❏ occlusion (limited penetration and incomplete exploration of voxels)

❏ develop estimates which are less biased and have lower variance

❏ How to correct the censorship bias of undetected targets?

❏ undetected hits bias the calculated signal attenuation and the estimated leaf areas. 

❏ model the effect of this censorship and correct this bias 

❏ in dense canopies, systematic overestimation of Leaf Area Index (LAI) 10~30% in 
magnitude

❏ simulation!
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State of the Arts methods

❏ Methods based on geometric and spatial properties

❏ Treeseg[1], LeWos[2], Quantitative Structure Models (QSMs) based[3], 

Superpoint based[4], Itakura et al. [10]

❏ Methods based on Random forest : 

❏ ‘Deep Points Consolidation algorithm’[5]

❏ Methods based on Deep Learning : 

❏ Point-wise methods : FSCT[6], Deep-RBN[7], Morel et al.’s method [8]

❏ Voxel-wise methods : Windrim et al.’s method[9], Yang et al. [11]
Fig 3. Lewos on TLS data 



Prototype model :  Point-Voxel based neural network
Semantic segmentation on ULS dataset

How to get training data?

❏ label transfer from TLS to ULS data

❏ training with TLS and fine-tuning with ULS

❏ downsample the TLS data 
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Fig 4. ULS-like data 



Use Canopy Height Model (CHM) to qualify co-registration quality

ULS CHM TLS CHM

Diff CHM = ULS CHM - TLS CHM

Figure 5.  CHM comparaison
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Figure 6.  TLS and ULS co-registration

(a)  TLS (b)  overlap (c)  ULS
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Figure 7.  TLS and ULS co-registration

(a)  TLS (b)  overlap (c)  ULS apres 
transfer label
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Figure 8. The architecture of the prototype model 11
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The architecture of Prototype Model
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Figure 9.  Trilinear interpolation
It approximates the value of a function at an intermediate point (x,y,z) within the local axial 
rectangular prism linearly, using function data on the lattice points. Find 8 nearest voxels in 
the space.

r
vi

k

color is n
vi

/max(n
vi

) 
Ratio of point density

n
vi

 in v
i



Figure 10.  Preliminary results : overprediction!

(a) overpredict wood (b) overpredict leaf
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14Figure 11.  Failure prediction for some parts, need to improve



15Fig 12: Still no desired result

Fig 12-1. Training on tls, p@intensity, 
v@ratio point density, 0.2m, acc<50%

Fig 12-2. p@elevation, v@ratio 
point density, 0.2m, acc<50%

Fig 12-3. p@intensity, v@ratio point 
density, 0.1m, acc<50%

Fig 12-4. p@intensity, v@ratio point 
density, 0.1m, without rescaling, acc<70%

Fig 12-5. p@intensity, v@ratio point 
density, 0.1m, rescaling, acc=85%

Fig 12-6. p@intensity, v@ratio point 
density, 0.1m, rescaling, acc=80%

Fig 12-7. p@intensity, v@ratio return 
number, 0.1m, rescaling, acc <50%

Fig 12-8. p@intensity, v@std 
intensity, 0.1m, rescaling, acc<50%
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Fig 12: Result on test data, improvement needed

Fig 12-9. p@intensity, v@occupacy 
1 or 0, 0.1m, acc<50%

Fig 12-10. p@intensity, v@intensity 
moyen, 0.1m, acc<50%

Fig 12-11. p@intensity + elevation, 
v@ratio point number, 0.1m, acc<50%

Fig 12-12. p@intensity + elevation, 
v@ratio point number, 0.1m, pointnet, 
acc=90%

Fig 12-13. p@intensity + elevation, 
v@ratio point number, 0.1m, pointnet, 
acc=92.061%

Fig 12-14. p@intensity, v@ratio 
point number, 0.1m, pointnet, class 
weights added

Fig 12-15. p@intensity, v@ratio 
point number, 0.1m, pointnet, 
ensure the proportion of wood 
points when sampling



Figure 13. reflectance ratio (intensity), ULS (905 nm) vs TLS (1550 nm), Benjamin Brede et al.
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Figure 14. Plot loss and accuracy for training 300 epochs

(a) accuracy , 300 epochs

(b) loss, 300 epochs
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  Test accccccc
Validation acc

Test losscsccc
Validation loss
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2.4 Matthew Coefficient Correlation (MCC)

Fig 13. Matthew Coefficient Correlation / Phi coefficient

Fig 15. MCC is a good metric for class imbalance case



20Figure 13. Confusion Matrix for the best result so far (sample size=5000 point, epoch = 546)

Prediction

Total test point = 100000 Wood Leaf

True 
situation

Wood 328 3182

Leaf 4325 92165



Perspectives 

❏ Improving existing DL prototype model

❏ Limits of current estimators of vegetation density

❏ estimation of clumping parameter required 

❏ study spatial dependencies by using hierarchical Bayesian models.

❏ The censorship bias of undetected interceptions

❏ undetected interceptions biases the calculated signal attenuation and the 

estimated leaf areas

❏ model the effect and correct this bias
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(a) Airborne Riegl LMS-Q780 (b) DART-RC (Ray-Carlo): simulated ALS data

Figure 16. DART simulation
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DART has 3 major modes, we may use DART-RC which simulates LiDAR signals with a Ray-Carlo (RC) 
approach that combines ray tracking and forward Monte Carlo (MC) methods.
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Annexe A. Compare 12 different methods
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Annexe A-bis. Compare 12 different methods
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Annexe B. Small branches can also be detected

26



Figure 2. Different scanning position under tower Figure 3. A part of TLS Digital Terrain Model (DTM)
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Annexe C. merged TLS data



Annexe D. Training on TLS predict on ULS
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