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Introduction

@  Airborne Laser Scanning (ALS) :

d RIEGLLMSQ780

a

point density : ~70/m?, pulse density : ~40/m?

@  Terrestrial Laser Scanning (TLS):

a

a

RIEGL VZ-400

point density : >200,000/m?, pulse density : >200,000/m?

@ Unmanned aerial vehicle (UAV) Laser Scanning (ULS):

a

a

RIEGL miniVUX-1UAV

point density : >750/m?, pulse density : >500/m?

Ground area

Plant A Plant B

Leaf area = 40% Leaf area = 80%
of ground area of ground area
(leaf area index = 0.4) (leaf area index = 0.8)

Figure 1. Leaf Area Index (LAI)

The leaf area density (LAD) is defined as the total
one-sided leaf area of photosynthetic tissue per unit
canopy volume. The Leaf area index (LAl) is then
derived by integrating the leaf area density over the
canopy height. It corresponds to the one sided leaf
area per unit horizontal ground surface area.



. Leaf

© Wood
@ unidentified

(a) Terrestrial Laser (b) Unmanned Aerial Vehicle (c) Aerial Laser Scanning
Scanning (TLS) (UAV) Laser Scanning (ULS) (ALS)

Figure 2. LiDAR (Light Detection and Ranging) in a cuboid, 20 m x 20m x 50m,
“More is different” -- P. W. Anderson 4



Three identified questions attenuation_PPL_ML

E profile
How to do semantic segmentation (wood-leaf discrimination) on ULS data? "
(d  TLS -> dense, small footprint and fewer mixed points ;5
d  no good approach for drone data (Unmanned aerial vehicle Laser Scanning (ULS)) ol
How to get a more accurate and unbiased point estimator of vegetation 2
density? g N d
d  clumping (aggregate distribution of leaves), % . \\
[d  occlusion (limited penetration and incomplete exploration of voxels) g 0 j)
[d  develop estimates which are less biased and have lower variance T hq
How to correct the censorship bias of undetected targets? 10
[d  undetected hits bias the calculated signal attenuation and the estimated leaf areas. '
(1 model the effect of this censorship and correct this bias

00 01 0,2

A in dense canopies, systematic overestimation of Leaf Area Index (LAI) 10~30% in attenuation_PPL_ML

magnitude
. . -o- TLS vox
(1 simulation! =

-~ ULS_ 195956 vox



State of the Arts methods

1 Methods based on geometric and spatial properties

d  Treeseg[1], LeWos[2], Quantitative Structure Models (QSMs) based[3],
Superpoint based[4], ltakura et al. [10]

A Methods based on Random forest :
A ‘Deep Points Consolidation algorithm’[5]

A Methods based on Deep Learning :

[  Point-wise methods : FSCT[6], Deep-RBN][7], Morel et al.’s method [8]

Fig 3. Lewos on TLS data
A Voxel-wise methods : Windrim et al.’s method[9], Yang et al. [11] 6



Prototype model: Point-Voxel based neural network
Semantic segmentation on ULS dataset

How to get training data?
1 label transfer from TLS to ULS data

A training with TLS and fine-tuning with ULS

1 downsample the TLS data

Fig 4. ULS-like data
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Use Canopy Height Model (CHM) to qualify co-registration quality

Pattern of chunks :
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Figure 5. CHM comparaison
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(a) TLS (b) overlap

Figure 6. TLS and ULS co-registration



(b) overlap (c) ULS apres
transfer label

Figure 7. TLS and ULS co-registration




The architecture of Prototype Model
Input

% | voxelized cuboid (e.g. point density

< | 5000 points (x,y, z)

— Voxel-based branch

PointNet

% | scalar (intensity, return number, etc.)

added

% | roughness, illuminance, verticality, etc.

Point-based branch

Trilinear interpolation | S

el

[xy,z, ((intensity * number of return) /
return number), scan angle, , £ f s f321,
fofyenf .1, f ]

Fully Convolutional
Network (FCN)

Figure 8. The architecture of the prototype model
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Figure 9. Trilinear interpolation
It approximates the value of a function at an intermediate point (x,y,z) within the local axial

rectangular prism linearly, using function data on the lattice points. Find 8 nearest voxels in i

the space.



wood_proba wood_proba

(a) overpredict wood (b) overpredict leaf

Figure 10. Preliminary results : overprediction!




wood_proba

Figure 11. Failure prediction for some parts, need to improve



wood_proba

Fig 12-1. Training on tls, p@intensity,
v@ratio point density, 0.2m, acc<50%

wood_proba

Fig 12-5. p@intensity, v@ratio point
density, 0.1m, rescaling, acc=85%

wood_proba

Fig 12-2. p@elevation, v@ratio
point density, 0.2m, acc<50%

wood_proba

Fig 12-6. p@intensity, v@ratio point
density, 0.1m, rescaling, acc=80%

wood_proba

Fig 12-3. p@intensity, v@ratio point
density, 0.1m, acc<50%

wood_proba

Fig 12-7. p@intensity, v@ratio return
number, 0.1m, rescaling, acc <50%

Fig 12: Still no desired result

wood_proba

Fig 12-4. p@intensity, v@ratio point
density, 0.1m, without rescaling, acc<709

wood_proba

Fig 12-8. p@intensity, v@std
intensity, 0.1m, rescaling, acc<50%
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wood_proba : wood_proba wood_proba
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Fig 12-9. p@intensity, v@occupacy Fig 12-10. p@intensity, v@intensity Fig 12-11. p@intensity + elevation, Fig 12-12. p@intensity + elevation,
10or0,0.1m, acc<50% moyen, 0.1m, acc<50% v@ratio point number, 0.1m, acc<50% v@ratio point number, 0.1m, pointnet,
acc=90%

wood_proba

Fig 12-14. p@intensity, v@ratio Fig 12-15. p@intensity, v@ratio

. point number, 0.1m, pointnet, class point number, O'lm.’ pointnet,
= ensure the proportion of wood

points when sampling

0.375

weights added

0.250.
0.188
0.125
0.063
0.000

Fig 12-13. p@intensity + elevation,
v@ratio point number, 0.1m, pointnet,

acc=92.061%

Fig 12: Result on test data, improvement needed 1%
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Figure 13. reflectance ratio (intensity), ULS (205 nm) vs TLS (1550 nm), Benjamin Brede et al.
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Figure 14. Plot loss and accuracy for training 300 epochs 18



2.4 Matthew Coefficient Correlation (MCC)

The MCC can be calculated directly from the confusion matrix using the formula:

TP x TN — FP x FN
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

MCC =

Fig 13. Matthew Coefficient Correlation / Phi coefficient

validation matthew correlation coefficient - avg

0 20 40 60 80 100 120 140

Fig 15. MCC is a good metric for class imbalance case
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Prediction

Total test point = 100000 Wood Leaf
True Wood 328 3182
situation
Leaf 4325 92165

Figure 13. Confusion Matrix for the best result so far (sample size=5000 point, epoch = 546)

20



Perspectives

(A Improving existing DL prototype model

(d Limits of current estimators of vegetation density

A estimation of clumping parameter required

[  study spatial dependencies by using hierarchical Bayesian models.
(A The censorship bias of undetected interceptions

d undetected interceptions biases the calculated signal attenuation and the

estimated leaf areas

d  model the effect and correct this bias

21



(b) DART-RC (Ray-Carlo): simulated ALS data

(a) Airborne Riegl LMS-Q780
Figure 16. DART simulation

DART has 3 major modes, we may use DART-RC which simulates LiDAR signals with a Ray-Carlo (RC)
approach that combines ray tracking and forward Monte Carlo (MC) methods.

22
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Annexe A. Compare 12 different methods

Algo Train Set Test Set
Number of
. Type de Number of L Type de
Name Number of tree Number of points LiDAR Name tree points in LiDAR
each class
1 ha of tropical forest (moist, Terra Firma, lowland, mixed
species, old growth) in Nouragues Nature Reserve, French i s
e Guiana/ 0.25 ha of Eucalyptus spp. open forest in Karawatha A25/40 S lion50 iRk TS
. For i
. arfomaho 30-m diameter English oak plot and a 80-m diameter 124 million/71
Geometric | reconstruction for plot A i | il TLS
level ustralian eucalyptus plot million
new classificaiton Mulligans Flat Nature Reserve (Austrahan Capital Territory, 8 1,379,173 points MLS
algo Australia) TUUUU
robot c_ietect tronc_ any forest imtalannand TLS
superpoint, geometric Synthetic dataset 30 20 million triangle TLS
only mesh
Random forest simulated data
LeWoS Eastern estimating of Cameroon 61 50000/second TLS
700,000 Scan point
a novel individual Qishan scenic area, 4 places, 1947.16, 501 (trees), 168 (trees)/334 (buildings), ﬁlg:xfzgert:?:?;d ULﬁr(]l;r;ma Qishan | 522, 160,
tree segmentation 44,596.64, 60,601.78 and 14,780.11 square meters 426 (trees), and 166 (trees) Sl i : scenic 456, and ULS
. . . 1002.17 pts m -2, aerial
method 50% traning, 50% testing 10240 after the data augmentation : area 167
722.31 pts m-2, vehicle)
dividual e point
R ) individual tree poin
FsCT M 'plz'tf”"‘" gl 177 trees clouds TLS
: 20.000 to 100.000
Supzrwse a semi-
deciduous
an innovative method TLS forest of TLS
Eastern
T TE T TR [T R TR ey T ALS Cameroon
o Radiata pine forests in , Australia B - s
australia, helicopter | Tumut, NSW, Australia (collected in November 2016) and 400 stems/rjaegnf%) O-stemsiia 300 700mpzomts per (helicopter ~11%+ ALS
Carabost. NSW. Australia (collected in Februarv. 2018) )
3D CNN eight different sites across the Northern New 714 trees/ha 9 pls/m2 ALS

England/Acadian Forest
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Annexe A-bis. Compare 12 different methods

Algo Descriptor/Method Performance Notes Articles Author | Year conference/Journal
Euclidean clustering, principal component analysis, g s it g : . ;
. s ) Not full automatically Extracting individual trees from lidar point clouds using | Andrew Methods in Ecology and
: 9 9
Ireeseg reglon-based segmeptgtlon, sj.hape fiting:and 96;7%and (0 % 30% required further manual segmentation treeseg Burt et al. 2048 Evolution
automatic build quantitative structure moﬁe S(QSMs) for P ISPRS Annals of the
reconstruct| every tree, this method is based on morphological quantitative structure model of every tree MASSIVE-SCALE TREE MODELLING FROM TLS 2 Photogrammetry, Remote
: N/A g SShRe Raumone |2015 % ;
ion for plot rules, a cover-set approach, Calculate the biomass, not cliassification DATA t al Sensing and Spatial
level and aeometric orimiti nere. Information Sciences
new tala set 15 loo small, recognize Tras and vegatation Deriving comprehensive forest structure information Sezanne
P < o 4 s 98 % for trees and 80 % | not classification, and failed to correctly classify g .comp z % : M. Environmental Modelling &
classificaito| structural characteristics of the vegetation objects P § from mobile laser scanning observations using A 2016
n algo or vegetation three of the trees and three of the elevated automated point cloud classification Marselis et Software
= veaetation obiects ] ali:,,,, :
dr:lectt 3-D geometry analysis of point clouds and N/A Tech report, let robot to be able to traverse the Automatic Three-Dimensional Point Cloud Processing ean-isran 2006 N/A
tronc geometric primitives fitting perceived terrain. Not too related to us. for Forest Inventory Lalgg de et
. |'superpoint, based on super point, the conception that | have Unsupervised semantic and instance segmentation of ISPRS Journal of
Geometric geometric Super point graph + unsupervised 87.7% seen in Paris po A 9 Di WANG |2020| Photogrammetry and Remote
i forest point clouds 4
anly Sl dRner 3 Sos0s |
neargorinm e mput point
cloud
itself, preserving quantitative accuracy in the Sundara
Random Random forest classifier o resulting model. Automatic Segmentation of Tree Structure From Point S
% R ~91% Tejaswi |2018 IEEE
forest Deep Points Consolidation, meso-skeleton Use labelled data Cloud Data Di ;
shes igumarti
manual thresholds or heuristics based on tree
allometry do
——— — — not enalaamall acrace diffarant enacioc af traoc and._|
graph based point cloud segmentation technique
Manual fine-tuning somg thresholds, class LeWo?: A Universal Leaf-wood Classmcathn Method 4 Methods in Ecology and
LeWoS probability ~91% STOA? to Facilitate the 3D Modelling of Large Tropical Trees | Di WANG (2019 :
o ; ey Evolution
Graph-structured class regularization oeprates on Using Terrestrial LIDAR
class probability
a novel
individual 4 Individual Tree Crown Segmentation Directly from UAV- i
tree Deep learning, supervised, PointNets+ ~90% Shermors dela":';"é':l:t‘ga’::g:'me g Borne LIDAR Data Using the PointNet of Deep Ch’;‘:’:?al 2021 MDPI
segmentati pag Learning “
on method o R S
Sensor Agnostic Semantic Segmentation of Structurally|  Sean
FSCT Deep learning, supervised, PointNet++ ~95.4% FSCT Diverse Krisanski (2021 MDPI
: -and Complex Forest Point Clouds Usina Deep Learnina| etal.
an subsample the raw point clouds by using
. . Deep learning, supervised, PointNet++ ans Poissondisk sampling Segmentation of unbalanced and in-homogeneous Jules .
Supervise mr::{::;e Poisson disk sampling, local PCA, 0% our method classifies 90 to 95% of the point clouds and its application to 3D scanned trees Morel 2020 Springer:Nature
d - noints as aood as a human
low-flying aircraft at high-resolutions (hundreds of
points per m2 ) D ¢ 5 s
" ot etection, Segmentation, and Model Fitting of
au§tralla, 2 ASiain s_egmematlon approat;h extend_ed by ~72% - 92% Individual tree need manually label Individual Tree Stems from Airborne Laser Scanning L.lqu 2020 MDPI
helicopter | incorporating voxel representations that include = : Windrim
g 4 St s of Forests Using Deep Learning
LiDAR return intensity into the learning
representation
All LIDAR data were acquired between 2012 ¢ : i x
3D CNN | and 2016 in leaf-on conditions between June and JheUse of Three-D|men_s:TalfCogvolunonaI Neural }I\Ehas 2018 MDPI
August Networks to Interpret LIDAR for Forest Inventory yrey
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Annexe B. Small branches can also be detected




Annexe C. merged TLS data
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Figure 2. Different scanning position under tower Figure 3. A part of TLS Digital Terrain Model (DTM)




Annexe D. Training on TLS predict on ULS

‘ llabel




