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Résumé

Les populations d’espèces sauvages ont des structures dynamiques. Elles sont largement distribuées. Le
suivi de leurs tendances nécessite un échantillonnage. Le présent travail aborde la question de la répartition
optimale de l’effort d’échantillonnage au fil du temps et dans l’espace afin de minimiser l’imprécision de
l’estimateur de la tendance. Concrètement, nous partons des travaux de réalisés par Rhodes et Jonsen
en 2011 dont nous relevons les limites et proposons une extension nécessaire pour l’application dans
de réels écosystèmes gérés. Nous introduisons dans le plan d’échantillonnage, les notions de placettes
non-permanentes et de strates. Le modèle avec placettes non-permanentes fait l’objet de simulation
numérique. Les résultats obtenus traduisent un intérêt quantativement modéré de recourir aux placettes
non permanentes dans le cadre d’un programme de suivi de la biodiversité. Nous discutons les perspectives
ouvertes par ce travail en rapport à l’échantillonnage spatio-temporel dans les programmes de surveillance
de la biodiversité.

Mots-clés :
modèle de croissance de Gompertz, distribution stationnaire, plan d’échantillonnage optimal, auto-
corrélation spatiale, auto-corrélation temporelle, modèle auto-régressif.

Abstract

Species have dynamic structures. They are broadly distributed. Monitoring their trends calls for sampling.
This work addresses how to allocate sampling effort over time and space in order to minimize the imprecision
of the trend estimator. Concretely, we start from the work of Rhodes and Jonsen for which we identify
the limitations and propose a necessary extension for the application in real managed ecosystems. We
introduce the notions of non-permanent plots and strata into the sampling design. We compute the
model with non-permanent plots. The results obtained reflect a quantitatively moderate interest of using
non-permanent plots as part of a biodiversity monitoring program. We discuss the perspectives of this work
related to spatio-temporal sampling in biodiversity monitoring programs.

Key-words:
Gompertz growth model, stationary distribution, optimal design, spatial correlation, temporal correlation,
auto-regressif process.
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1. Intoduction

The Habitat Fauna Flora Directive in its article 11 requires each country to monitor species and habitats of
community interest. As a result, it seems necessary for each country to set up a monitoring system for both
terrestrial and aquatic biodiversity (habitats,vegetation, animals). In France, the PASSIFOR (Proposals for
the Improvement of the FOREST Biodiversity Monitoring System) and the “Terrestrial Biodiversity Moni-
toring Project” supported by the French Biodiversity Office have been designed for this purpose. The former
aims at assessing the possibility of designing an effective system for monitoring forest biodiversity at differ-
ent scales (national, regional, local) and to draw the practical modalities according to one or more scenarios
(http://www.gip-ecofor.org/projet-passifor/). The latter is “designed as an operational device, intended to
answer the questions posed by public policies and society, to provide reliable and up-to-date information
to monitor the state of biodiversity in connection with environmental pressures and that contributes to the
evaluation of the conservation efforts that are made” (Lévêque pers. comm., UMS PatriNat online).
Biodiversity monitoring refers to a system of regular observations of ecosystem over time, informing about
biodiversity state with the purpose to detect and assess the trends of quantities like species richness, species
diversity, species abundances (Mitusova 2006, Gosselin et al. 2007). It has an important role to play in
managing environment and understanding population dynamics (Lindenmayer and Likens 2010). Species are
made of individuals forming populations that have dynamic structures. Individuals are usually very difficult
to count and are broadly distributed. Thus, the monitoring of their trends may cost enormously in time
and financial resources (Nielsen et al. 2009). So ecological monitoring calls for sampling in order to estimate
the biological quantities of interest. Moreover, monitoring usually consists in measuring environmental
parameters and sampling species in small, pre-defined locations, called plots. There are several strategies to
tackle the sampling in monitoring. In particular, the plots can be identical for each measurement campaign
(permanent plots) or be may change from one campaign to the other. The most commonly used method is
the first one (Urquhart and Kincaid 1999). In addition, the effort can be spread over many plots visited less
often or over few plots visited frequently. The optimal choice between these last two alternatives depends
on the spatial and temporal correlation of what is measured (Rhodes and Jonzén 2011). Rhodes and Jonsen
research used a simplified spatio-temporal model to explore how to allocate the sampling effort among spatial
and temporal replicates to minimize uncertainty in trend estimates. They showed that “allocating sampling
effort among spatial and temporal replicates depends on the spatial and temporal correlations in population
dynamics and environmental variation” (Rhodes and Jonzén 2011). Particularly, when spatial correlation is
low and temporal correlation is high, the best option is to sample many sites infrequently, particularly when
observation error and/or spatial variation in temporal trends are high. And when spatial correlation is high
and temporal correlation is low, the best option is likely to be to sample few sites frequently, particularly
when observation error and/or spatial variation in temporal trends are low.
The aim of this research is to determine the optimal distribution of the sampling effort in time and space
using an extended version of Rhodes and Jonzen’s framework. Concretely, we will emphasize the introduction
of non-permanent plots and introduction of strata. Then we will also clarify the limits and simplifying
assumption of the original Rhodes and Jonzen model and propose necessary extensions for application in
real managed ecosystems.

2. Definitions of some concepts

2.1. Design methods

For finite population sampling there are two main modes of inferences which are design-based and model-based
(Little 2004). Design-based inference estimates characteristics of a population only from the probabilistic
nature of the design or sampling plan with asymptotic properties. It gives a good estimators in larges
samples but is limited for small samples adjustment. It is not based on a data-based model. While model-
based inference is based on a data-based model. If the model corresponds well to the model that generated
the data, it gives an estimators with good properties based on likelihood or Bayesian principles (Little 2004).
In addition, the design-based approach is often used in classical survey sampling, whereas the model-based

5

http://www.gip-ecofor.org/projet-passifor/


approach is used in geostatistics and in time series analysis in research (Gore 2008).
In this work, we used model-based method as Rhodes and Jonsen because it allows to take account of spatial
and temporal structures of the data. Indeed, in the model-based approach, the weights of the data are
determined by the covariances between the observations, which are given by the model as a function of the
coordinates of the sampling locations (de Gruijter et al. 2006).

2.2. Spatial correlation vs temporal correlation

The spatial correlation reflects the existence of a resemblance relationship between the information collected
on two close sites. While the temporal correlation reflects the resemblance between the information collected
at two different dates on the same site.

2.3. Asymptotic state vs stationary state

The asymptotic behavior is the behavior of the process when t tends to infty. Whereas stationary behavior
is the one where the mean and the variance do not dependent on t, i.e the dynamics has been running for a
long time before the beginning of the survey. Here, we used asymptotic behavior for probabilistic model and
stationary behavior for statistic model.
In this research, both of them were the same. Indeed,we parametrized the behavior of initial population
from start in the statistic model under stationarity assumption as the same as the asymptotic behavior of
the probabilistic model.

3. Materials and methods

This chapter will be subdivided into three parts. First, we will present Gompertz model which serves as a
basis to both Rhodes and Jonzen’s and the present work. Then, we will present the monitoring strategy
used which is different from Rhodes and Jonzens’s and finally the experiment.

3.1. Gompertz state-space (GSS) model : definition and notations

The Gompertz State-Space (GSS) model is a stochastic process used to depict time-series of population
abundances. It combines density-dependence and environmental process noise (environmental variation).
The population dynamics are represented by the discrete-time stochastic Gompertz model like :

Ni,t = Ni,t−1exp(−0.5σ2 + γ(lnKi,t−1 − lnNi,t−1) + ui,t) (1)
with Ni,t the positive, real-valued represented the abundance of sub-population i at time t; Ki,t the equilib-
rium abundance of sub-population i at time t; γ the strength of density-dependence; ui,t the stochastic envi-
ronmental variation in the population growth rate for sub-population i at time t, described by a S-dimensional
gaussian vector with mean zero and variance-covariance matrix Σ. We defined Σ as Rhodes and Jonsen
such that environmental variation among sub-population was spatially correlated, with V ar(ui,t) = σ2 and
Cov(ui,t, uj,t) = ρdi,j σ2. −0.5σ2 makes sure that the expected growth rate was the same as the growth rate
for the equivalent deterministic version of the model (Rhodes and Jonzén 2011).
On a logarithmic scale, the Gompertz model becomes

lnNi,t = lnNi,t−1 − 0.5σ2 − γ(lnNi,t−1 − lnKi,t−1) + ui,t (2)
Rhodes and Jonsen define the quantity ϵi,t = lnNi,t − lnKi,t which we call here deviations from local
equilibrium (DFLE).
If γ = 0, we have lnNi,t = lnNi,t−1 − 0.5σ2 + ui,t. It represents the case of density-independence. Whereas if
γ=1, we have lnNi,t = lnKi,t−1 − 0.5σ2 + ui,t. It means that there is not temporal correlation. In this case,
the population abundance lnNi,t fluctuates around carrying capacity lnKi,t−1. And γ > 1 is for species with
chaotic behavior.
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3.2. Monitoring strategy and scenarios

Sampling method is one of the key points in ecological monitoring (de Gruijter et al. 2006 and Vos et al. 2000).
The sampling method used by Rhodes and Jonsen in their work was to randomly select S sub-populations
among the population P and to collect abundance at regular intervals in these same locations. That means
that they used only pure panels (de Gruijter et al. 2006). One consequence is that there is not one-shot plots.
Here, we choose to adopt rotational sampling which allow revisited designs. In other words, this strategy
allows us to have both permanent and non-permanent plots. Concretely, permanent plots are sampled at
regular sampling time whereas non-permanent plots are sampled randomly. In this work, we choose to
sample non-permanents plots only one time. A potential advantage of this strategy is its flexibility and
better spatial coverage (Gore 2008). Note that there is different revisited designs and sampling methods.
People can get more information about them in de Gruijter et al. (2006) and McDonald (2003).

Figure 1 : Illustration of sampling design synchronized permanent plots vs unsynchronized non-permanent
plots

Rhodes and Jonsen in their paper considered different scenarios. The first ones in which they supposed that
there is not observation error in the estimating of the abundance and variation in their temporal trends.
The aim in this case was to identify the best monitoring program based on the parameters γ (temporal
correlation and the strength of density-dependence), ρ (spatial correlation) and σ (environmental variation).
And the second in which they supposed that there is an observation error and/or variation in the log-linear
temporal trends. The best monitoring program in this case was identified as a function of γ, ρ, σ, σobs and
σtrend where the authors assumed that the abundances lnNi,t are observed with an error (σ2

obs > 0).
In this work, we just considered two scenarios according to our monitoring strategy. A first one in which

7



there is only permanent plots and a second in which there is a mixture of permanent and non-permanent
plots. The aim was to identify the best monitoring strategy depending on the parameters mentioned above
and the proportion of non-permanent plots in the sample.

3.3. Experiments

For the sake of simplicity, we considered the simplify form of the Gompertz stochastic model. We assumed
that there is no temporal variation in the log-linear trend equilibrium population sizes, r (σ2

trend = 0). We
also assumed that the distribution of lnNi,t is stationary which means that the dynamics has been running
for a long time before the beginning of the survey. Then, like Rhodes and Jonsen, we can use the generalised
least squares (GLS) formulas for estimating the variance of the log-linear temporal trend, r. In this case, the
MVUE (minimum variance unbiased estimator) of r is the one we were looking for. Compared to the work
of Rhodes and Jonsen , the innovation here is the introduction of non-permanent plots with one sampling
time. Note that several combinations of µ, σ and γ are possible in the intercept of the model.

Specifically, let defined S the total number of sites, tmax the maximum monitoring time, Sp the total number
of permanent sites, Snp the total number of non-permanent sites, Tp the number of visits per permanents
sites and Tnp the number of visits per non-permanent sites, T the average number of visits per sites and p
the proportion of non-permanent sites. B = Sp × Tp + Snp is the cost of one scenario. The variance of the
estimated temporal trend is then

V ar(r̂) = [(X′ΦX)−1]3,3 (3)

where X is a design matrix of length B × 3. Φ is a B × B matrix specifying the variance-covariance of the
residuals of the generalised least squares model, with S = Sp + Snp and T = (1 − p)Tp + p. The explicit
form of the variance-covariance matrix Φ is described in the appendix A (precisely eq.A35). Then we were
able to identify optimal sampling designs (those which had the lowest sampling variance for estimating the
log-linear temporal trend) and to identify how this varied with the parameters γ (temporal correlation), ρ
(spatial correlation) and p (proportion of non-permanents plots). To do so, we considered a spatial domain
with 10 × 10 square landscape (spatial unit). tmax were fixed at 30 years and B at 1500, constant. B and
tmax in our work were bigger than those used by Rhodes and Jonsen because our monitoring is at national
scale. We considered all combinations of 1 − γ ∈ {0.2, 0.4, 0.6, 0.8, 1} and ρ ∈ {0, 0.2, 0.4, 0.6, 0.8}. Note
that T and p have been set up in order to have the cost B. They were chosen in the space of the divisors
of B. Thus, we had the following sampling designs : T = 2, 3, 5, 6, 10, 15, 30 and p = 0, 0.5, 0.8, 0.9, 0.96.
The environmental variation and the variation of observation error were fixed (σ2 = 1 and σ2

obs = 0.1).
We calculated the standard error se(r̂) for precise values and γ, ρ, T and p and that for each crossing
γ/ρ, we took the minimum T and p among these discrete values. Concretely, like Rhodes and Jonsen, we
simulated, 100 times, the spatial location of the S sub-populations i surveyed by randomly located them
on the landscape. For each replicate, we calculated the sampling variance of the log-linear temporal trend
estimate. The expected sampling variance was then estimated as the mean of the sampling variance of the
100 replicates and we determined the optimal sampling design as those which has the minimum sampling
variance of the trend estimate. (Tmin, Pmin) is a couple of parameters T and P corresponding to the optimal
sampling design.
In order to facilitate decision-making, we introduced other indicators such as standard error se(r̂) and the
ratio of standard error between the case permanent plots and mixtures of permanent and non-permanent
plots (∆se = senpp(r̂)

sepp(r̂) ) with sepp(r̂), the standard error for the case of permanent plots and senpp(r̂), the
standard error for the case of non-permanent plots (see appendix C for resume of the different steps of the
simulation).

4. Results

First, we analyzed the work of Rhodes and Jonsen in order to identify its limitations. Then, we extended
them through the introduction of non-permanent plots and strata.
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4.1. Analysis and identification of the limitations of Rhodes and Jonsen’s work

The assumption of stationarity is obviously the first limit of the work of Rhodes and Jonsen. Indeed, in real
life, monitoring does not necessarily start in a equilibrium state. The dynamics may have changed recently.
Second, by fitting the stationary model, they assumed that γ (temporal correlation), ρ (spatial correlation)
and σ (environmental variation) were perfectly known at their true value before, which is not true in real
life in which these parameters have to be estimated. Moreover, Rhodes and Jonsen did not derive the mean
structure of the deviations from local equilibrium. They also did not write the complete expression of the
deviations from local equilibrium, ϵi,t. They forgot some terms. Although these terms do not affect the
variance-covariance matrix, they are contained in the structure of the mean and therefore should be taken
into account in case of a complete fit to a data set. In addition, Rhodes and Jonsen fit a linear regression
model Yt = f(t) without intercept where Yt = logNi,t − logNi,0 (see eq.A37a and A54a for the expression
of the model). We derived the variance-covariance matrix of this model in appendix A obtained a result
different from the one used by Rhodes and Jonsen, which is another limit of their work.

4.2. Explicit temporal trajectories of the model

With the hypothesis and the methodological choice (stationarity and a type of regression lnNi,t − lnNi,0 =
f(t)) made by Rhodes and Jonsen in their work, they rule out the question of initialization at the beginning
(t = 0) and only consider a simplified subspace of the possible temporal trajectories of Ni,t. Here we do
not make these assumptions (see details about initialization of the process in section 4.3.2). Moreover,
with the introduction of non-permanent plots, it is not possible to estimate the trend after only one visit
using Rhodes and Jonsen model. Consequently, we opted for regression Yt = f(t) where Yt = logNi,t with
intercept. This regression model has the advantage to take account of the initial data and therefore would
give a better estimators of other parameters of the model (environmental variation σ for example) especially
when the dynamic is non-stationary. In this section, we focused on the right expression of the deviations
from local equilibrium and their mean and variance-covariance structures which either did not appear or
were potentially not true in Rhodes and Jonsen work.

Like Rhodes and Jonsen in their work, we assumed that our hypothetical population P is subdivided into
several spatially distinct sub-populations i and that the dynamics of each of them follows a density-dependent
stochastic Gompertz model (Rhodes and Jonzén 2011). Σ is defined such that the environmental variation
between sub-populations is spatially correlated. The environmental variation of one sub-population i at time
t is supposed to be unchanged (V ar(ui,t) = σ2) and the covariance of two different sub-populations, i and
j, at the same point in time, t, is equal to ρdi,j σ2 (Cov(ui,t, uj,t) = ρdi,j σ2), with ρ, the strength of spatial
correlation in growth rates and di,j , the distance between two sub-populations i and j. ρ and γ are assumed
to be independent and constant belonging to ]0,1[. There is not interaction between spatial and temporal
correlations. Environmental variation, ui,t, are assumed to be independent with Ni,0 (the initial abundance
of the sub-population i). The environmental variation at different time steps are assumed to be uncorrelated
(Cov(ui,t, ui,s) = 0 with t ̸= s).

In real life, population abundances are rarely known exactly and can be variable. In order to account for
their effects on sub-population abundance estimates, observation errors and variation in the temporal trends
among sub-population i are modeled by two normally distributed variables vi,t and ηi with means 0 and
variance σ2

obs and σ2
trend respectively (see after appendix A) (Rhodes and Jonzén 2011). Observation errors

are assumed to be independent for different sub-populations i and j or at different times t and t − s for the
same sub-population i. The same independence assumption has been made between ecological deviations
from local equilibrium and observation errors. In addition, environmental variation and observation errors
are assumed to not depend on variation in temporal trends of each sub-population.

Next, like Rhodes and Jonsen, we assumed that at logarithmic scale, the equilibrium populations have a
deterministic temporal trend and a variable rate of change for each sub-population i. That means that
lnKi,t = lnKi,t−1 + ri = lnKi,t−1 + (r + ηi) where r is deterministic and ηi is an independent and normally
distributed random variable with mean 0 and variance σ2

trend. From eq.2, the recursion relationships for the
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deviations from local equilibrium for site i at time t is a linear autoregressive of order [AR(1) process] time
series model defined as follows

ϵi,t = (1 − γ)ϵi,t−1 + ui,t − r − ηi − 0.5σ2 (4)

ϵi,0 where i ∈ {1, ..., S} with S the total number of sites, is supposed to be a gaussian vector. So, ϵi,t with
i ∈ {1, ..., S} is a ST -dimensional gaussian vector, with T , the total number of visits, as a linear combination
of gaussian variables. If there is not variation in the temporal trends among sub-population (σ2

trend = 0),
the rate of change of the equilibrium population sizes for each sub-population i is unchanged. In this case,
the recursion relationships become

ϵi,t = (1 − γ)ϵi,t−1 + ui,t − r − 0.5σ2 (5)

The derived mean of the deviations from local equilibrium (DFLE) is :

Mean(ϵi,t) = (1 − γ)tMean(ϵi,0) − (r + 0.5σ2)1 − (1 − γ)t

γ
(6)

The derived asymptotic and non-asymptotic variance-covariance matrix of the deviations from local equilib-
rium is Π (see appendix A16 for the description of Π).

4.3. Mathematical extension of Rhodes and Jonsen’s model

4.3.1. Introduction of strata

In ecological monitoring, it is not uncommon to use strata in the sampling design to separate several types
of statistical populations. For example, Carvalho et al. (2016) proposed a framework based on stratification
to design optimized multispecies-targeted monitoring networks over large areas. Another part of our work
consisted in extending the results obtained by Rhodes and Jonsen by introducing strata. Let assume that the
population is divided into g strata with different trend parameters. Each sub-population i of each stratum
is submitted to a different density-dependence, with γg, the strength (intensity) of that dependence in the
strata. Each sub-population i of each stratum has a different trend ri, and that these trends are normally
and independently distributed with mean rg and variance σ2

trend,g. For the sake of simplicity, ρ and σ are
supposed to be unchanged from one stratum to another. If not, it would be difficult to write the right
expression of the variance between deviation from local equilibrium of the sub-population i at time t − 1 and
environmental variation of the sub-population j at time t − s, Cov(ϵi,t−1, uj,t−s). From eq.4 the deviations
from local equilibrium becomes

ϵi,t = (1 − γg(i))ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2 (7)

When temporal and spatial correlation are identical, eq.7 becomes

ϵi,t = (1 − γ)ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2 (8)

The analytic expressions of mean and variance-covariance are developed in appendix A.

4.3.2. Statistical space-time model for estimating the trend on abundance Ni,t

In order to evaluate potential dynamic designs, it is important to specify a space-time model with a low
estimation error (Wikle and Royle 1999). This model must account for spatio-temporal variability and
correlation in the environmental process (Wikle et al. 2019). For this reason, the prior part of our work
consisted in taking again the calculations of Rhodes and Jonsen while relaxing the assumption of stationarity
and writing the explicit form of the statistical model of the process. We assumed that the dynamic is not
stationary. Our goal is to model the log-linear temporal trend in the population sizes over time. To do so,
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we gave a specific form to the initial states (initial population) such as initially the population is away from
equilibrium and non-stationary. Then the structures of the initial deviations from local equilibrium, ϵi,0,
were parametrized as follows

Mean(ϵi,0) = c (9)

V ar(ϵi,0) = σ2
0

1 − (1 − γ)2 (σ2 + σ2
trend(1 + 2 − 2γ

γ
)) (10)

Cov(ϵi,0, ϵj,0) = σ2
0

1 − (1 − γ)2 (ρdi,j σ2 + σ2
trend(1 + 2 − 2γ

γ
)) (11)

and

Cov(ϵi,0, ηi) =
θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2
(12)

with c a constant and σ0 positive. The initial carrying capacity lnKi,0 were supposed to be deterministic
and defined as follows

lnKi,0 = µ + ωxi (13)

The conditional form of the regression model is :

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + (1 − γ)t(c + r + 0.5σ2

γ
) + ηit + ϵ′

i,t (14)

where ϵ′
i,t is a centered multivariate gaussian variable defined as the difference between deviations from local

equilibrium and its average value. The term ηit is deterministic and will be contained in the mean of lnNi,t.
Conversely, in the marginal version, the term ηit is stochastic and then is be contained in the residuals. This
model can be written as follows:

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + (1 − γ)t(c + r + 0.5σ2

γ
) + Ei,t (15)

The residual here is Ei,t and is defined as follows : Ei,t = ϵ′
i,t + ηit. The parameters that will have to be

estimated in both two models are r, γ, ρ, σ, µ, ω, c, θ, σtrend and σ0 where c, θ and σ0 are the initialization
parameters (see Table 1).
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Table 1 : List of parameters

Parameters Definition
r log-linear temporal trend
γ Temporal correlation
ρ Spatial correlation
σ Environmental variation
µ intercept of the initial carrying capacity
ω slope of the initial carrying capacity
σtrend variation in log-linear temporal trend
σ0 initialization parameter
c initialization parameter
θ initialization parameter

Due to the dependencies and variability in environmental process, the statistic model include a nonlinear
structure in the mean, a precise parametrized form of variance-covariance, or even random effects whose
parameters will have to be estimated under the non-stationary assumption. In appendix A, we derived
the means and variance-covariance matrices of each model (with and without observation errors). The
variance-covariance matrix of the residuals of the conditional model is identical to the variance-covariance
matrix of the residuals of the statistical model without site effects (variation in the temporal trends among
sub-populations). The means and variance-covariance of the models share same parameters, which makes
them difficult to estimate with classical statistical tools. For estimating of the parameters of these mod-
els, some use methods such as Laplace approximation, quasi-likelihood, generalized estimating equations,
pseudo-likelihood, and penalized quasi-likelihood through TMB (Template Model Builder) whereas other
use Bayesian framework (Wikle et al.(2019)). Furthermore, due to complexity problems, it is desirable to
consider both marginal and conditional forms of the model and estimate their parameters because one could
be faster than the other.

Under stationary assumption, ϵi,0 has the asymptotic behavior of the probabilistic model. That means that
if σ0 = 1, c = −(r+0.5σ2)

γ and θ = − σtrend

√
1−(1−γ)2

γσ0

√
σ2+σ2

trend
(1+ 2−2γ

γ )
, we are in the stationary regime and the regression

model is a type of linear mixed-effects model. Consequently, the conditional regression model becomes

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + ηit + ϵ′

i,t (16)

Whereas the marginal model becomes

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + Ei,t (17)

Based on eq.17, the first column of the matrix X contained only 1 (for intercept). The second one contained
the values of the variable xi in each site at each time steps. The third column was for the variable time t.
For, numerical implementations, we focused on marginal form of the model following Rhodes and Jonzen
approach. Note that there are several methods to estimate parameters of this kind of model. We will not
develop them here. Ones use generalised linear squares (GLS) for estimating parameters for the stationary
form of the model because GLS explicitly accounts for the dependence in the errors (Wikle et al.2019). Dennis
et al.(2006) have developed maximum likelihood and restricted maximum likelihood approaches to parameter
estimation for this Gompertz stochastic model under stationary assumption. Also Wikle and Royle (1999),
Rao and Toutenburg (1995) and Bates and Pinhero (2000) have correctly addressed the problem of estimating
parameters in linears models, KK et al. (1998) and Faraway (2006) in non linears models.
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4.4. Computation of non-stationary model

We first tried to compute the non-stationary model and estimate the parameters through TMB (Template
Model Builder). But, we faced an error while simulating multinormal distribution of lnNi,t. Which led
us to Bayesian modeling. On greta, the MCMC estimators obtained after N = 1000 iteractions were not
convergent. For example, the figure 2 show the convergence of the parameter logit(ρ). The graphs did not
mix well. Moreover, we got 23% of bad behaviour of the hamiltonian used in greta in the sampling phase,
which indicates we cannot trust the output blindly. Nimble might give a result. Due the relatively short
time that remained and the impossibility of being able to compare these results with those of the previous
methods, we decided to implement the stationary model using Rhodes et Jonsen approach (see details of the
simulation in section 4.5).

Fig 2 : convergent curve of logit(ρ) with greta for N=1000 iteractions. S=4 and T=4

4.5. Computation of stationary model : results of experiment

We describe the scenario where there were only permanent plots. When spatial correlation was high (ρ
high) and temporal correlation low (1 − γ low), the optimal sampling times was Tmin = 30 (the maximum
possible value). That means that allocating survey effort to temporal replicates was preferentially better
(fig.3). While, when spatial correlation was low (ρ low) and temporal correlation high (1 − γ high), the
optimal sampling times was Tmin = 2 (the mminimum possible value). Surveying in two times was the best
strategy. That means that it would be better to allocate survey effort to spatial replicates (fig.3). Moreover,
when spatial correlation was high (ρ high) and temporal correlation high (1 − γ high), surveying in ten
times out of thirty (Tmin = 10) was the best strategy (fig.3). The standard deviation of the estimated trend
for the best strategy was lowest when spatial and temporal correlations were low and highest when spatial
and temporal correlations were high (fig.3). Furthermore, the preferred strategy did depend on spatial and
temporal correlations. The results did not account for the case of density-independence (1−γ = 1 or γ = 0).
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Fig 3 : Contour plots of the standard deviation of the trend estimate for the preferred number of temporal
surveys and minimum sampling times as a function of temporal correlation (1 − γ) and spatial correlation

(ρ) for only permanent plots. The survey cost is B = 1500, σ2 = 1 and σ2
obs = 0.1

Then we describe the second scenario which corresponded to the case where there were a mixture of perma-
nent and non-permanent plots. The preferred strategy did also depend on spatial and temporal correlations.
The results are the same for the optimal sampling time and the optimal standard deviation with a few
differences. Indeed, when spatial correlation was high (ρ high) and temporal correlation low (1 − γ low), the
optimal sampling times was Pmin = 15 (the half of possible value). Therefore, allocating survey effort to
temporal replicates was preferentially better (fig.4). Whereas when spatial correlation was low (ρ low) and
temporal correlation high (1 − γ high), surveying in Tmin = 2, the minimum of possible value, was the best
strategy. That means that it would be better to allocate survey effort to spatial replicates (fig.4). Moreover,
when spatial correlation was high (ρ high) and temporal correlation high (1−γ high), surveying in Tmin = 2
was also the best strategy (fig.4). The standard deviation of the estimated trend for the best strategy was
lowest when spatial and temporal correlations were low and highest when spatial and temporal correlations
were high (fig.4).

Fig 4 : Contour plots of the standard deviation of the trend estimate for the preferred number of temporal
surveys and average minimum sampling times as a function of temporal correlation (1 − γ) and spatial

correlation (ρ) for mixture of permanent and non-permanent plots. The survey cost is B = 1500, σ2 = 1
and σ2

obs = 0.1
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We also optimize the proportion of non-permanents plots, p. So, it comes out that when spatial correlation
was low (ρ low), the optimal sampling was Pmin = 0. That means that the optimal sampling was the
one without non-permanent plots (fig.5). Whereas when spatial correlation increased the proportion of
non-permanent plots first increased and then decreased (fig.5) while knowing that the number of visits in
the permanent plots increased regularly (fig.4). So, as the spatial correlation increased, the best strategy
was to firstly sample with non-permanent plots and more temporal replicates in the temporal permanent
plots. Then came a level where the best strategy was only permanent plots with temporal replicates. When
temporal correlation was high (γ high), the change of strategy did not happen (fig.5). So, the best strategy
in this case is sampling with non-permanent plots and more temporal replicates in the temporal permanent
plots.

Fig 5 : Contour plots of proportion of non-permanents plots as a function of temporal correlation (1 − γ)
and spatial correlation (ρ) for mixture of permanent and non-permanent plots. The survey cost is

B = 1500, σ2 = 1 and σ2
obs = 0.1

After we compared the standard error of the estimator of trend, r̂ in these two cases (presence and absence
of non-permanent plots). The gain of standard error (∆se − 1) varied between 0 and 3%. When the spatial
correlation was weak, the variation in the estimation error was equal to 1 (fig 6). Therefore there was
no point in using sampling with non-permanent plots. While when spatial and temporal correlations are
moderate, the best sampling was sampling with a proportion of non-permanent plots. The same conclusions
were valid when temporal and spatial correlation were high. In this case, the gain of standard error (∆se-1)
varied between 1 and 3% (fig 6).
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Fig 6 : Plots of the variation of standard deviation as a function of temporal correlation (1 − γ) and spatial
correlation (ρ). red is for (∆se − 1) ∈] − 0.03, −0.02], orange is for (∆se − 1) ∈] − 0.02, −0.01] and yellow is

for (∆se − 1) ∈] − 0.01, −0]

5. Discussion

5.1. Is it necessary to introduce non-permanent plots in the sampling design?

Optimization of the average number of visits per site in presence/absence of non-permanent plots has shown
us that when temporal correlation was low and spatial correlation was high, sampling with temporal replicates
was the best strategy. Whereas when spatial correlation was low and temporal correlation is high, sampling
with spatial replicates was the best strategy. These results are corroborated by the work of Rhodes and
Jonsen (Rhodes and Jonzén 2011).
The spatial correlation reflects the existence of a similarity relationship between the information collected
on two close sites at the same time t. While the temporal correlation reflects the similarity between the
information collected at two different dates on the same site. Having a powerful sampling design need
to have a maximum of independent observations. Correlation, whether temporal or spatial, violates this
rule. In fact, when the correlation is higher, the amount of information contained in the sample is smaller
(fig.5, right side). The estimator obtained in this case is therefore less efficient. In the presence of a strong
spatial correlation, the information collected on non-permanent plots will be similar to that contained in
permanent plots. The results obtained after optimizing the proportion of non-permanent plots seem to
prove the contrary. Indeed, our analyzes show that when the spatial correlation was weak, introducing non-
permanent plots did not provide additional information. This paradox is partly resolved when we remember
the fact that the permanent plots actually had only two visits, so that there was already a lot of sites. The
marginal gain in adding non-permanent plots was small and did not compensate for the loss in multiplying
the between-site variability.
In order to measure the performance of the obtained temporal trend estimators, we calculated the standard
error. The results obtained shown that the gain of estimating trend by introduction non-permanent plots
was too weak (1-3%).
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5.2. Limitations of the present results and associated perspectives

The first limit of our work is obviously the simplifying assumption of stationarity that we made for the
simulation. Indeed, in real life, monitoring does not necessarily start in a equilibrium state. As Wikle and
Royle affirmed in 1999 : “assuming that one knows the spatio-temporal covariance structure of a process, it
is simple to develop the best linear unbiased predictor and associated prediction variance for some location
and time given a sample of observations. But generally, one does not know the full joint spatio-temporal
covariance structure”. Furthermore, the analysis of ∆se − 1 showed us that the gain in estimated trend
is between 1 and 3% when we introduce non-permanent plots compared to sampling with only permanent
plots. We therefore wonder if this gain is practically significant or not. So, we propose to complete the
present work with implementing the complete non-stationary model through Nimble or greta and TMB (if
it is possible). Secondly, the budget, the environmental variation and the variation of the observation error
were constant. It would also be interesting to look for the effect of a variation of the budget in the optimal
sampling method. The same for the cases where there is a variation of observation errors (σ2

obs) and/or
variation of σ2

trend. In addition, due to the problem of access to the computing cluster, we were not able to
perform the simulations in the case of the strata. As the monitoring project is national, even international
and as terrestrial biodiversity in French is not homogeneous, it would be interesting to implement the model
while introducing strata in order to take account of this heterogeneity. In ecology, the spatial and temporal
correlations are not always independent as in our work. It would be interesting to model the dynamics
while considering an interaction between temporal and spatial correlations, i.e. a truly spatio-temporal
correlation structure. This will introduce a probably much greater complexity (see Wikle et al. 2019). In
meta-population, they models are called spatially-explicit metapopulation models. Hanski et al. 1994 used
this type of model to model the metapopulation structure and migration in the Butterfly Melitaea Cinxia.

6. Conclusion

This internship is part of the project called PASSIFOR2 (Proposals for the Improvement of the FOREST
Biodiversity Monitoring System). It was funded by the Center for Ecology and Conservation Sciences
(CESCO-Museum) and involved CESCO and INRAE Nogent-sur-Vernisson.
The objective of this internship is to optimize the distribution of the sampling effort in time and space
based on Rhodes and Jonsen. Our work mainly consisted of clarify the limits and simplifying assumption
of the original Rhodes and Jonzen model and propose necessary extensions for application in real managed
ecosystems. After that we introduce the notion of non-permanent plots and strata in the sampling design.
Then, we computed the non-stationary model on TMB and greta and the stationary one on R. After, we
compared the results obtained in the last one with those of Rhodes and Jonsen. Due to time and the
problem of accessibility to the computation cluster, all the simulations were not done. While implementing
the non-stationary model, we encountered problems that have remained unresolved until now. The results
obtained from the numerical simulation reflect the importance of the introduction of non-permanent plots
in biodiversity monitoring. However, the quantitative gain is small (3% at most). This is potentially linked
to our definition of permanent plots which takes into account plots with at least two passages. Many other
research questions remain unanswered in this work. And it would be interesting to focus on it in order
to improve our result in particular and biodiversity monitoring programs in general. We have listed a few
above.
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7. Appendix

7.1. Appendix A

We will first work on the probabilistic model. Then, we will develop the statistical model which will help to
estimate the parameters. At this level, new parameters (initial conditions) will be introduced.

Inititial model

The Gompertz model can be written as :

Ni,t = Ni,t−1exp(−0.5σ2 + γ(lnKi,t−1 − lnNi,t−1) + ui,t), (A1)

Assumptions

• lnKi,t changes deterministically at a rate r (Rhodes and Jonsen’s assumption 1), i.e
lnKi,t = lnKi,t−1 + (r + ηi) (ηi appears if there is spatial variation of the trend)

• V ar(ui,t) = σ2

• Cov(ui,t, uj,t) = ρdi,j σ2 (the growth rate of two different sub-populations, i and j, at the same point
in time, t) with ρ the magnitude of spatial correlation in abundances, di,j is the geographic distance
between sub-populations i and j

• 0<ρ<1 (the parameter that defines the strength of spatial correlation in growth rates)

• 0<γ<1 (the parameter that defines the strength of temporal correlation and density-dependence. γ =
0 means density-independence whereas γ=1 means that there is not temporal correlation. In this case,
the population abundance lnNi,t fluctuates around carrying capacity lnKi,t−1)

• Cov(ui,t, ui,s) = 0 (ui,t are assumed to be independent with of Ni,0)

• Cov(ui,t, uj,s) = 0 for i ̸= j or t ̸= s

• σ2, γ and ρ are constant over time

• γ and ρ are assumed to be independent

• Cov(ui,t, ηi) = 0 (environmental variation is assumed to not depend on variation in temporal trends
of each sub-population)

Deriving the multivariate distribution of DFEs

On a logarithmic scale, the Gompertz model can be written as :

lnNi,t = lnNi,t−1 − 0.5σ2 − γ(lnKi,t−1 − lnNi,t−1) + ui,t

Rhodes and Jonsen define the quantity ϵi,t = lnNi,t − lnKi,t which we call here deviations from equilibrium
(DFE). Then, lnNi,t−1 = lnKi,t−1 + ϵi,t−1 and we can write the previous equation as

lnNi,t = lnKi,t−1 − 0.5σ2 + ϵi,t−1 − γϵi,t−1 + ui,t

= lnKi,t−1 − 0.5σ2 + (1 − γ)ϵi,t−1 + ui,t

(A2)
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As lnKi,t changes deterministically at a rate r (Rhodes and Jonsen assumption 1), i.e lnKi,t = lnKi,t−1 + r,
it holds that

lnKi,t−1 = lnKi,t − r (A3)
for t ≥ 1.
By substituting eq.A3 into eq.A2, we obtain :

ϵi,t = (1 − γ)ϵi,t−1 + ui,t − r − 0.5σ2 (A4)

In this work, we suppose that ϵi,0 where i ∈ {1, ..., S} with S the total number of sites, is multivariate
gaussian variable. So, eq.A4 implies that ϵi,t with i ∈ {1, ..., S} is a S × T -dimensional gaussian vector, as a
linear combination of ϵi,0.
Now we can derive mean and variance-correlation structure of the deviations from local equilibrium, ϵi,t.

Variance-covariance matrix of the models with deviation from equilibrium (DFE)

Mean of DFLE
Mean(ϵi,t) = Mean((1 − γ)ϵi,t−1 + ui,t − r − 0.5σ2)

= (1 − γ)Mean(ϵi,t−1) − (r + 0.5σ2)

Using a general result about arithmetico-geometric sequences, we obtain :

Mean(ϵi,t) = (1 − γ)tMean(ϵi,0) − (r + 0.5σ2)1 − (1 − γ)t

γ
(A5)

We can easily note that if 0<γ<1, the sequence Mean(ϵi,t) converges when t increases to infinity but is
not constant. It converges when t becomes large (t → ∞) and it is then equal to −(r+0.5σ2)

γ . Having
Mean(ϵi,t) constant in time means that we must assume that it is initialized to its equilibrium value,
i.e. Mean(ϵi,0) = −(r+0.5σ2)

γ . In this work, 0<γ<1, that means that we always have convergence.

Variance
V ar(ϵi,t) = V ar((1 − γ)ϵi,t−1 + ui,t − r − 0.5σ2)

= (1 − γ)2V ar(ϵi,t−1) + σ2

We find an arithmetico geometric sequence for which we have a standard method that gives us the general
term of the sequence. Thus,

V ar(ϵi,t) = (1 − γ)2tV ar(ϵi,0) + σ2 1 − (1 − γ)2t

1 − (1 − γ)2 (A6)

If 0<γ<1, asymptotically in t, we obtain V ar(ϵi,t) → σ2

1−(1−γ)2 because (1 − γ)2t → 0. That means that the
sequence V ar(ϵi,t) converges when t increases to infinity but is not constant. Having V ar(ϵi,t) constant in
time means that we must assume that it is initialized to its equilibrium value, i.e. V ar(ϵi,0) = σ2

1−(1−γ)2 .

Covariance

Cov(ϵi,t, ϵj,t−s) = Cov((1 − γ)ϵi,t−1 + ui,t − r − 0.5σ2, (1 − γ)ϵj,t−s−1 + uj,t−s − r − 0.5σ2)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)Cov(ϵi,t−1, uj,t−s)
+ (1 − γ)Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s)

(A7)

Based on the recurrence (eq.A4), we have Cov(ϵi,t−1, uj,t−s) = (1−γ)Cov(ϵi,t−2, uj,t−s)+Cov(ui,t−1, uj,t−s).

We have Cov(ϵi,t−v, uj,t−s) = 0 if v > s. Both two previous results imply that
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• if s = 1
Cov(ϵi,t−1, uj,t−1) = ρdi,j σ2

• if s > 1
Cov(ϵi,t−1, uj,t−s) = (1 − γ)Cov(ϵi,t−2, uj,t−s)
Then we can remark that Cov(ϵi,t−s+v, uj,t−s) is a geometric sequence on v where (1 − γ) is a common
ratio and ρdi,j σ2 is the initial term. Therefore Cov(ϵi,t−1, uj,t−s) = (1 − γ)s−1ρdi,j σ2.

Case 1 : s > 0 (t − s < t)
We have Cov(ui,t, ϵj,t−s−1) = 0 and Cov(ui,t, uj,t−s) = 0. Then,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)Cov(ϵi,t−1, uj,t−s)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)sρdi,j σ2

We find an arithmetico geometric sequence for which we have a standard method that gives us the general
term of the sequence. Thus, we obtain

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2(t−s)Cov(ϵi,s, ϵj,0) + (1 − γ)sρdi,j σ2 1 − (1 − γ)2(t−s)

1 − (1 − γ)2

In addition, Cov(ϵi,s, ϵj,0) = (1 − γ)Cov(ϵi,s−1, ϵj,0) + Cov(ui,s, ϵj,0) = (1 − γ)Cov(ϵi,s−1, ϵj,0) because s > 0.
Using recurrence, we obtain

Cov(ϵi,s, ϵj,0) = (1 − γ)sCov(ϵi,0, ϵj,0) (A7a)

.

Then,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2(t−s)(1 − γ)sCov(ϵi,0, ϵj,0) + (1 − γ)sρdi,j σ2 1 − (1 − γ)2(t−s)

1 − (1 − γ)2

= (1 − γ)2t−sCov(ϵi,0, ϵj,0) + (1 − γ)sρdi,j σ2 1 − (1 − γ)2(t−s)

1 − (1 − γ)2

= (1 − γ)2t−s(Cov(ϵi,0, ϵj,0) − ρdi,j σ2

1 − (1 − γ)2 ) + (1 − γ)sρdi,j σ2

1 − (1 − γ)2

Whence, asymptotically in t (t → ∞), with fixed s, we have Cov(ϵi,t, ϵj,t−s) → (1−γ)sρdi,j σ2

1−(1−γ)2 .

Similarly, a simple change of variable s = −s, yields the result for s < 0 (t − s > t) is Cov(ϵi,t, ϵj,t−s) =
(1 − γ)2t−s(Cov(ϵi,0, ϵj,0) − ρdi,j σ2

1−(1−γ)2 ) + (1−γ)−sρdi,j σ2

1−(1−γ)2 . And asymptotically, we have : Cov(ϵi,t, ϵj,t−s) →
(1−γ)−sρdi,j σ2

1−(1−γ)2

Case 2 : s = 0
We have,

Cov(ϵi,t, ϵj,t) = (1 − γ)2Cov(ϵi,t−1, ϵj,t−1) + (1 − γ)Cov(ϵi,t−1, uj,t)
+ (1 − γ)Cov(ui,t, ϵj,t−1) + Cov(ui,t, uj,t)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−1) + Cov(ui,t, uj,t)

= (1 − γ)2tCov(ϵi,0, ϵj,0) + ρdi,j σ2 1 − (1 − γ)2t

1 − (1 − γ)2

= (1 − γ)2tCov(ϵi,0, ϵj,0) − (1 − γ)2tρdi,j σ2

1 − (1 − γ)2 + ρdi,j σ2

1 − (1 − γ)2
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because Cov(ϵi,t−1, uj,t) = 0 and Cov(ui,t, ϵj,t−1) = 0. Furthermore, Cov(ui,t, uj,t) = ρdi,j σ2. Then
asymptotically in t with fixed s , we obtain Cov(ϵi,t, ϵj,t) = ρdi,j σ2

1−(1−γ)2 .

On the whole, asymptotically in t with fixed s , we obtain

Cov(ϵi,t, ϵj,t−s) → (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2 (A8)

As in the cases of mean and variance of ϵi,t, if 0<γ<1, the sequence Cov(ϵi,t, ϵj,t−s) is not constant over
time. Having Cov(ϵi,t, ϵj,t−s) constant in time means that we must assumed following initial condition :
Cov(ϵi,0, ϵj,0) = ρdi,j σ2

1−(1−γ)2 .

If we sampled S subpopulations, each at T points in time, with no observation error, and β the number
of years between two surveys, then, based on the equations above, the variance-covariance matrix of the
deviations from equilibrium, ϵi,t, is

Φ = σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 (A9)

where

Pi,j =


ρdi,j (1 − γ)βρdi,j . . . (1 − γ)β(T −1)ρdi,j

(1 − γ)βρdi,j ρdi,j . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j . . . . . . ρdi,j


Each sub-matrix Pi,j represents the correlation structure among the deviations from equilibrium for surveyed
subpopulations i and j among points in time. To obtain above matrix, we assumed following initial conditions
: Mean(ϵi,0) = −(r+0.5σ2)

γ , V ar(ϵi,0) = σ2

1−(1−γ)2 and Cov(ϵi,0, ϵj,0) = ρdi,j σ2

1−(1−γ)2 which amounts to assuming
that the dynamics has been running for a long time before the beginning of the survey. If not, the variance-
covariance matrix should be replaced by the non-asymptotic expression
Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−s(Cov(ϵi,0, ϵj,0) − ρdi,j σ2

1−(1−γ)2 ) + (1−γ)|s|ρdi,j σ2

1−(1−γ)2 .

Variation in temporal trends among subpopulations

Here, let us suppose that each subpopulation has a different deterministic trend ri, and that these trends
are normally and independently distributed with mean r and variance σ2

trend. Thus, the model is :

lnNi,t = lnNi,t−1 − 0.5σ2 − γϵi,t−1 + ui,t

We call the quantity ϵi,t = lnNi,t − lnKi,t = lnNi,t − lnKi,0 − (r + ηi)t, deviations from local equilibrium
(DFLE). ηi is an independent and normally distributed random variable with mean 0 and variance σ2

trend.
In this case, the DFLE is equal to

ϵi,t = (1 − γ)ϵi,t−1 + ui,t − r − ηi − 0.5σ2 (A10)

Mean of DFLE
Based on the fact that Mean(ηi) = 0, we have

Mean(ϵi,t) = Mean((1 − γ)ϵi,t−1 + ui,t − r − ηi − 0.5σ2)
= (1 − γ)Mean(ϵi,t−1) − (r + 0.5σ2) − Mean(ηi)
= (1 − γ)Mean(ϵi,t−1) − (r + 0.5σ2)
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Then, using a general result about arithmetico-geometric sequences, we obtain

Mean(ϵi,t) = (1 − γ)tMean(ϵi,0) − (r + 0.5σ2)1 − (1 − γ)t

γ
(A11)

If 0<γ<1, the sequence Mean(ϵi,t) converges when t increases to infinity but is not constant. It converges
when t becomes large (t → ∞) and it is then equal to −(r+0.5σ2)

γ . Having Mean(ϵi,t) constant in time means
that we must assume that it is initialized to its equilibrium value, i.e. Mean(ϵi,0) = −(r+0.5σ2)

γ .

Variance
V ar(ϵi,t) = V ar((1 − γ)ϵi,t−1 + ui,t − r − ηi − 0.5σ2)

= (1 − γ)2V ar(ϵi,t−1) + σ2 + σ2
trend − 2(1 − γ)Cov(ϵi,t−1, ηi)

because ui,t and ηi are independent. We have

Cov(ϵi,t−1, ηi) = Cov((1 − γ)ϵi,t−2 + ui,t − r − ηi − 0.5σ2), ηi)
= (1 − γ)Cov(ϵi,t−2, ηi) − σ2

trend

We also find an arithmetico geometric sequence. By spreading the recurrence, we have :

Cov(ϵi,t−1, ηi) = (1 − γ)t−1Cov(ϵi,0, ηi) − σ2
trend

1 − (1 − γ)t−1

γ
(A12)

Then,

V ar(ϵi,t) = (1 − γ)2V ar(ϵi,t−1) + σ2 + σ2
trend − 2((1 − γ)tCov(ϵi,0, ηi) − σ2

trend

(1 − γ) − (1 − γ)t

γ
)

= (1 − γ)2V ar(ϵi,t−1) + σ2 + σ2
trend + 2σ2

trend

(1 − γ)
γ

− 2(1 − γ)t(Cov(ϵi,0, ηi) + σ2
trend

γ
)

= (1 − γ)2V ar(ϵi,t−1) + B1 − 2(1 − γ)tB2

where B1 = σ2 + σ2
trend(1 + 2−2γ

γ ) and B2 = Cov(ϵi,0, ηi) + σ2
trend

γ

By spreading the recurrence, we have :

V ar(ϵi,t) = (1 − γ)2tV ar(ϵi,0) + B1
1 − (1 − γ)2t

1 − (1 − γ)2 − 2B2(1 − γ)t 1 − (1 − γ)t

γ
(A13)

Asymptotically in t, we obtain V ar(ϵi,t) → 1
1−(1−γ)2 (σ2 +σ2

trend(1+ 2−2γ
γ )) = B1

1−(1−γ)2 because (1−γ)t → 0.
If 0<γ<1, the sequence V ar(ϵi,t) converges when t increases to infinity but is not constant. To obtain
this constancy, we assumed following initial conditions : V ar(ϵi,0) = 1

1−(1−γ)2 (σ2 + σ2
trend(1 + 2−2γ

γ )) and
Cov(ϵi,0, ηi) = − σ2

trend

γ which amounts to assuming that the dynamics has been running for a long time
before the beginning of the survey. These initial conditions are well defined because V ar(ϵi,0) ≥ − σ2

trend

γ

which can be demonstrated (proof not shown).

Covariance
Assuming that ηi and ui,t are independent, we have

Cov(ϵi,t, ϵj,t−s) = Cov((1 − γ)ϵi,t−1 + ui,t − r − ηi − 0.5σ2, (1 − γ)ϵj,t−s−1 + uj,t−s − r − ηj − 0.5σ2)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)Cov(ϵi,t−1, uj,t−s) − (1 − γ)Cov(ϵi,t−1, ηj)
+ (1 − γ)Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s) − (1 − γ)Cov(ηi, ϵj,t−s−1) + Cov(ηi, ηj)

(A14)
Based on the recurrence (eq.A10), we have Cov(ϵi,t−1, uj,t−s) = (1−γ)Cov(ϵi,t−2, uj,t−s)+Cov(ui,t−1, uj,t−s)
because Cov(ηi, uj,t−s) = 0.We have Cov(ϵi,t−v, uj,t−s) = 0 if v > s. Both two previous results imply that
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• If s = 1
Cov(ϵi,t−1, uj,t−1) = ρdi,j σ2

• If s > 1
Cov(ϵi,t−1, uj,t−s) = (1 − γ)Cov(ϵi,t−2, uj,t−s)
Then we can remark that Cov(ϵi,t−s+v, uj,t−s) is a geometric sequence on v where (1 − γ) is a common
ratio and ρdi,j σ2 is the initial term. Therefore Cov(ϵi,t−1, uj,t−s) = (1 − γ)s−1ρdi,j σ2.

Case 1 : i ̸= j
If i ̸= j, Cov(ηi, ηj) = 0, Cov(ϵi,t−1, ηj) = 0 and Cov(ηi, ϵj,t−s−1) = 0. Then,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)Cov(ϵi,t−1, uj,t−s)
+ (1 − γ)Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s)

• If s > 0 (t − s < t)
We have Cov(ui,t, ϵj,t−s−1) = 0 and Cov(ui,t, uj,t−s) = 0. Then,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)Cov(ϵi,t−1, uj,t−s)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)sρdi,j σ2

Here we can find an arithmetico geometric sequence for which we have a standard method that
gives us the general term of the sequence. In addition, as we proved above, Cov(ϵi,s, ϵj,0) = (1 −
γ)sCov(ϵi,0, ϵj,0). Then,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−sCov(ϵi,0, ϵj,0) + (1 − γ)sρdi,j σ2 1 − (1 − γ)2(t−s)

1 − (1 − γ)2

Asymptotically in t (t → ∞), with fixed s, we have Cov(ϵi,t, ϵj,t−s) → (1−γ)sρdi,j σ2

1−(1−γ)2 .
Similarly, a simple change of variable s = −s, yields the result for s < 0 (t − s > t) is
Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−sCov(ϵi,0, ϵj,0) + (1 − γ)−sρdi,j σ2 1−(1−γ)2t

1−(1−γ)2 . And asymptotically, we

have : Cov(ϵi,t, ϵj,t−s) → (1−γ)−sρdi,j σ2

1−(1−γ)2

• If s = 0
We have,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2Cov(ϵi,t−1, ϵj,t−1) + (1 − γ)Cov(ϵi,t−1, uj,t)
+ (1 − γ)Cov(ui,t, ϵj,t−1) + Cov(ui,t, uj,t)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−1) + Cov(ui,t, uj,t)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−1) + ρdi,j σ2

because Cov(ϵi,t−1, uj,t) = 0 and Cov(ui,t, ϵj,t−1) = 0. Then, we have

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2tCov(ϵi,0, ϵj,0) + ρdi,j σ2 1 − (1 − γ)2t

1 − (1 − γ)2

Asymptotically in t (t → ∞), with fixed s, we have Cov(ϵi,t, ϵj,t) = ρdi,j σ2

1−(1−γ)2 .

On the whole, for i ̸= j, the non asymptotic expression is :

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−sCov(ϵi,0, ϵj,0) + (1 − γ)|s|ρdi,j σ2 1 − (1 − γ)2min(t,t−s)

1 − (1 − γ)2 (14a)

And asymptotically in t with fixed s, we obtain Cov(ϵi,t, ϵj,t−s) → (1−γ)|s|ρdi,j σ2

1−(1−γ)2 . If 0<γ<1, the se-
quence Cov(ϵi,t, ϵj,t−s) is not constant over time. It converges when t becomes large (t → ∞) towards
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(1−γ)|s|ρdi,j σ2

1−(1−γ)2 . Having Cov(ϵi,t, ϵj,t−s) constant in time means that we must assumed following initial

condition Cov(ϵi,0, ϵj,0) = (1−γ)|s|ρdi,j σ2

1−(1−γ)2 .

Case 2 : i = j
If i = j, we have:

Cov(ϵi,t, ϵi,t−s) = (1 − γ)2Cov(ϵi,t−1, ϵi,t−s−1) + (1 − γ)Cov(ϵi,t−1, ui,t−s) − (1 − γ)Cov(ϵi,t−1, ηi)
+ (1 − γ)Cov(ui,t, ϵi,t−s−1) + Cov(ui,t, ui,t−s) − (1 − γ)Cov(ηi, ϵi,t−s−1) + σ2

trend

Cov(ϵi,t−1, ηi) = (1 − γ)Cov(ϵi,t−2, ηi) − σ2
trend because ui,t and ηi are independent. According to eq.A12,

we obtain :
Cov(ϵi,t−1, ηi) = (1 − γ)t−1Cov(ϵi,0, ηi) − σ2

trend

1 − (1 − γ)t−1

γ

Similarly,

Cov(ηi, ϵi,t−s−1) = (1 − γ)t−s−1Cov(ϵi,0, ηi) − σ2
trend

1 − (1 − γ)t−s−1

γ

• If s > 0 (t − s < t)
We have Cov(ui,t, ϵi,t−s−1) = 0 and Cov(ui,t, ui,t−s) = 0. Then,

Cov(ϵi,t, ϵi,t−s) = (1 − γ)2Cov(ϵi,t−1, ϵi,t−s−1) + (1 − γ)Cov(ϵi,t−1, ui,t−s) − (1 − γ)Cov(ϵi,t−1, ηi)
− (1 − γ)Cov(ηi, ϵi,t−s−1) + σ2

trend

= (1 − γ)2Cov(ϵi,t−1, ϵi,t−s−1) + (1 − γ)sσ2 + σ2
trend − (1 − γ)tCov(ϵi,0, ηi) + σ2

trend

(1 − γ) − (1 − γ)t

γ

− (1 − γ)t−sCov(ϵi,0, ηi) + σ2
trend

(1 − γ) − (1 − γ)t−s

γ

= (1 − γ)2Cov(ϵi,t−1, ϵi,t−s−1) + (1 − γ)sσ2 + σ2
trend(1 + 2 − 2γ

γ
)

− (1 − γ)t(Cov(ϵi,0, ηi) + σ2
trend

γ
) − (1 − γ)t−s(Cov(ϵi,0, ηi) + σ2

trend

γ
)

= (1 − γ)2Cov(ϵi,t−1, ϵi,t−s−1) + (1 − γ)sσ2 + σ2
trend(1 + 2 − 2γ

γ
)

− (1 − γ)t(Cov(ϵi,0, ηi) + σ2
trend

γ
)(1 + (1 − γ)−s)

= (1 − γ)2Cov(ϵi,t−1, ϵi,t−s−1) + A1 − A2(1 − γ)t

where A1 = (1 − γ)sσ2 + σ2
trend(1 + 2−2γ

γ ) and A2 = (Cov(ϵi,0, ηi) + σ2
trend

γ )(1 + (1 − γ)−s)
By spreading the recurrence, we have :

Cov(ϵi,t, ϵi,t−s) = (1 − γ)2(t−s)Cov(ϵi,s, ϵj,0) + A1
1 − (1 − γ)2(t−s)

1 − (1 − γ)2 − A2(1 − γ)t 1 − (1 − γ)t−s

γ

As we showed previously in eq.A7a, Cov(ϵi,s, ϵj,0) = (1 − γ)sV ar(ϵi,0)
Thus,

Cov(ϵi,t, ϵi,t−s) = (1 − γ)2t−sV ar(ϵi,0) − (1 − γ)2(t−s)Cov(ϵi,0, ηi)
1 − (1 − γ)s

γ
+ (1 − γ)sσ2 1 − (1 − γ)2(t−s)

1 − (1 − γ)2

+ σ2
trend(1 + 2 − 2γ

γ
)1 − (1 − γ)2(t−s)

1 − (1 − γ)2 − (Cov(ϵi,0, ηi) + σ2
trend

γ
)(1 + (1 − γ)−s)(1 − γ)t 1 − (1 − γ)t−s

γ
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Asymptotically in t (t → ∞), with fixed s, we have

Cov(ϵi,t, ϵj,t−s) → 1
1 − (1 − γ)2 ((1 − γ)sσ2 + σ2

trend(1 + 2 − 2γ

γ
))

Similarly, a simple change of variable s = −s, yields the result for s < 0 (t − s > t) is
Cov(ϵi,t, ϵj,t−s) → 1

1−(1−γ)2 ((1 − γ)−sσ2 + σ2
trend(1 + 2−2γ

γ ))

• If s = 0
Based on the previous results,

Cov(ϵi,t, ϵi,t−s) = (1 − γ)2tV ar(ϵi,0) + (σ2 + σ2
trend(1 + 2 − 2γ

γ
))1 − (1 − γ)2t

1 − (1 − γ)2

− 2(Cov(ϵi,0, ηi) + σ2
trend

γ
)(1 − γ)t 1 − (1 − γ)t

γ

For i = j, the non-asymptotic expression is :

Cov(ϵi,t, ϵi,t−s) = (1 − γ)2t−sV ar(ϵi,0) − (1 − γ)2min(t,t−s)Cov(ϵi,0, ηi)
1 − (1 − γ)|s|

γ

+ (1 − γ)sσ2 1 − (1 − γ)2min(t,t−s)

1 − (1 − γ)2 + σ2
trend(1 + 2 − 2γ

γ
)1 − (1 − γ)2min(t,t−s)

1 − (1 − γ)2

− (Cov(ϵi,0, ηi) + σ2
trend

γ
)(1 + (1 − γ)−s)(1 − γ)t 1 − (1 − γ)min(t,t−s)

γ

(14b)

Asymptotically in t (t → ∞), with fixed s, Cov(ϵi,t, ϵi,t−s) = 1
1−(1−γ)2 (σ2 + σ2

trend(1 + 2−2γ
γ )). If 0<γ<1,

the sequence Cov(ϵi,t, ϵj,t−s) converges when t increases to infinity but is not constant. One can obtain
a constant sequence by setting the initial conditions : V ar(ϵi,0) = 1

1−(1−γ)2 (σ2 + σ2
trend(1 + 2−2γ

γ )) and
Cov(ϵi,0, ηi) = −σ2

trend

γ .

On the whole, asymptotically in t, with fixed s, we have :

Cov(ϵi,t, ϵj,t−s) = 1
1 − (1 − γ)2 ((1 − γ)|s|ρdi,j σ2 + σ2

trend(1 + 2 − 2γ

γ
) × δi,j) (A15)

with δi,j , Kronecker symbol.

The variance-covariance matrix of the DFLE, with β the number of years between two surveys, is

Π = Φ + Φtrend

= σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2
trend(1 + 2 − 2γ

γ
)


J 0 . . . 0
0 J . . . 0

. . . . . . . . . . . .
0 0 . . . J

 (A16)

where

Pi,j =


ρdi,j σ2 (1 − γ)βρdi,j σ2 . . . (1 − γ)β(T −1)ρdi,j σ2

(1 − γ)βρdi,j σ2 ρdi,j σ2 . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j σ2 . . . . . . ρdi,j σ2


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and

J =


1 1 . . . 1
1 1 . . . . . .

. . . . . . . . . . . .
1 . . . . . . 1


with J, a matrix of dimension T × T

To obtain above matrix, we assumed that the dynamics has been running for a long time before the beginning
of the survey. If not, the variance-covariance matrix should be replaced by the non-asymptotic expression, i.e

Cov(ϵi,t, ϵj,t−s) =


(1 − γ)2t−sCov(ϵi,0, ϵj,0) + (1 − γ)|s|ρdi,j σ2 1−(1−γ)2min(t,t−s)

1−(1−γ)2 if i ̸= j

(1 − γ)2min(t,t−s)V ar(ϵi,0) − (1 − γ)2min(t,t−s)Cov(ϵi,0, ηi) 1−(1−γ)|s|

γ + A1
1−(1−γ)2min(t,t−s)

1−(1−γ)2

−A2(1 − γ)t 1−(1−γ)min(t,t−s)

γ if i = j

(A17)
where A1 = (1 − γ)|s|σ2 + σ2

trend(1 + 2−2γ
γ ) and A2 = (Cov(ϵi,0, ηi) + σ2

trend

γ )(1 + (1 − γ)−s)

Building a statistical framework to estimate the trend on Ns

In this section, the goal is to model the log-linear temporal trend in the population sizes over time. To do
so, we will use the models that can include a nonlinear structure in the mean, a precise parametrized form
of variance-covariance, or even random effects whose parameters will have to be estimated. These different
structures share the same parameters, which makes them difficult to estimate with classical statistical tools.
So, the model must be written explicitly and estimated. We will consider both marginal and conditional
forms of the model and estimate their parameters. Before expliciting toward the statistical models, we will
clarify how we model the initial capacity parameter lnKi,0 and the initial DFEs (or DFLEs), ϵi,0. Here,
we assume that the behavior of the initial population from start (stationary behavior) is the same as the
asymptotic behavior of the population from probabilistic model. In this work, β is the number of years
between two surveys.

How to model lnKi,0 and ϵi,0 ?

Modelisation of lnKi,0
There are several ways to model lnKi,0. Either we assume that they are deterministic or stochastic (with
or without spatial correlation). In this work, we assume that lnKi,0 are deterministic. More specifically, we
suppose lnKi,0 are correlated with another environmental variable called xi that we know. Then, we have :

lnKi,0 = µ + ωxi (A18)

where µ and ω are unknown parameters that will have to be estimated.

Modelisation of ϵi,0
As for the initial capacity parameter, it is necessary to model the multivariate initial DFEs (or DFLEs), ϵi,0.
It could also have several structures. But in this work, we assume that the structure of ϵi,0 is non-stationary.
Thus, we have :

• Mean(ϵi,0)
We assume that Mean(ϵi,0) is a constant (Mean(ϵi,0) = c), with c ̸= −(r+0.5σ2)

γ , an estimated param-
eter. It means that we consider that the populations are on average above or below the equilibrium
at the beginning of the sampling, i.e they would initially be out of equilibrium, non-stationary, which
seems important to us for a monitoring scheme.
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• Variance and covariance of ϵi,0

Here, we assume that V ar(ϵi,0) = σ2
0

1−(1−γ)2 (σ2 + σ2
trend(1 + 2−2γ

γ )) and Cov(ϵi,0, ϵj,0) =
σ2

0
1−(1−γ)2 (ρdi,j σ2 + σ2

trend(1 + 2−2γ
γ )) where σ0 > 0, σtrend, σ, γ and ρ are an estimated param-

eters. In addition, σ, γ and ρ are the same parameters as those used in environmental variation
structure ui,t.

• Correlation between ϵi,0 and ηi

In this work, we assume that there is a fixed correlation between ϵi,0 and ηi. That means that

Corr(ϵi,0, ηi) = Cov(ϵi,0,ηi)
√

1−(1−γ)2

σ0σtrend

√
(σ2+σ2

trend
(1+ 2−2γ

γ )
= θ. Then, we have Cov(ϵi,0, ηi) = θσ0σtrend

√
σ2+σ2

trend
(1+ 2−2γ

γ )√
1−(1−γ)2

with θ an unknown parameter that will have to be estimated.

If σ0 = 1, c = − r+0.5σ2

γ and θ = − σtrend

√
1−(1−γ)2

γσ0

√
σ2+σ2

trend
(1+ 2−2γ

γ )
, we are in the stationary regime from start.

Now, we can recalculate mean and variance-covariance expressions in each of the previous cases. We will
highlight the stationary and non-stationary structures. Let us remember that the stationary state is
the one where the mean and the variance of the DFLE (DFE) do not depend on t. That
means that all the quantities take the asymptotic values, i.e Mean(ϵi,t) = − r+0.5σ2

γ , V ar(ϵi,t) =
1

1−(1−γ)2 (σ2 + σ2
trend(1 + 2−2γ

γ )), Cov(ϵi,t, ϵj,t−s) = 1
1−(1−γ)2 ((1 − γ)|s|ρdi,j σ2 + σ2

trend(1 + 2−2γ
γ ) × δi,j) and

Cov(ϵi,0, ηi) = − σ2
trend

γ .

Reminder from the probabilistic model

Model without variations in temporal trends
In this case, σtrend = 0. Based on to the previous results (eq.A5, A6, A7 and A8), we have :

• Mean
Mean(ϵi,t) = c(1 − γ)t − (r + 0.5σ2)1 − (1 − γ)t

γ
(A19)

• Variance
V ar(ϵi,t) = σ2

1 − (1 − γ)2 ((1 − γ)2t(σ2
0 − 1) + 1) (A20)

• Covariance

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−sρdi,j σ2

1 − (1 − γ)2 (σ2
0 − 1) + (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2 (A21)

Asymptotically in t, we have :
Mean(ϵi,t) = −(r+0.5σ2)

γ , V ar(ϵi,t) = σ2

1−(1−γ)2 and Cov(ϵi,t, ϵj,t−s) = (1−γ)|s|ρdi,j σ2

1−(1−γ)2 .

In presence of observation error, we have :

Mean(λi,t) = c(1 − γ)t − (r + 0.5σ2)1 − (1 − γ)t

γ
− 0.5σ2

obs (A22)

V ar(λi,t) = σ2

1 − (1 − γ)2 ((1 − γ)2t(σ2
0 − 1) + 1) + σ2

obs (A23)
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Cov(λi,t, λj,t−s) = Cov(ϵi,t, ϵj,t−s) (A24)

Asymptotically in t with fixed s, we have :
Mean(λi,t) = −(r+0.5σ2)

γ − 0.5σ2
obs, V ar(λi,t) = σ2

1−(1−γ)2 + σ2
obs and Cov(λi,t, λj,t−s) = (1−γ)|s|ρdi,j σ2

1−(1−γ)2 .

Model with variations in temporal trends

Based on to the previous results (eq.A11, A13, A14a, A14b and A17), we have :

• Mean
Mean(ϵi,t) = c(1 − γ)t − (r + 0.5σ2)1 − (1 − γ)t

γ
(A25)

• Variance

V ar(ϵi,t) = 1
1 − (1 − γ)2 (σ2 + σ2

trend(1 + 2 − 2γ

γ
))((1 − γ)2t(σ2

0 − 1) + 1)

− 2(
θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2
+ σ2

trend

γ
) (1 − γ)t − (1 − γ)2t

γ

(A26)

• Covariance
When i ̸= j, we have :

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−sρdi,j σ2

1 − (1 − γ)2 (σ2
0 − 1) + (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2 (A27)

When i = j, we have :

Cov(ϵi,t, ϵi,t−s) =
σ2

trend(1 + 2−2γ
γ )

1 − (1 − γ)2 ((1 − γ)2min(t,t−s)(σ2
0(1 − γ)|s| − 1) + 1) + (1 − γ)2t−sσ2

1 − (1 − γ)2 (σ2
0 − 1) + (1 − γ)|s|σ2

1 − (1 − γ)2

+
θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2
× (1 − γ)2t−s − (1 − γ)2min(t,t−s)

γ

+
θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2
× (1 + (1 − γ)−s)((1 − γ)t×min(t,t−s) − (1 − γ)t)

γ

− σ2
trend

(1 + (1 − γ)−s)((1 − γ)t − (1 − γ)2min(t,t−s))
γ2

(A28)
Asymptotically in t with fixed s, we have :
Mean(ϵi,t) = −(r+0.5σ2)

γ and V ar(ϵi,t) = 1
1−(1−γ)2 (σ2 + σ2

trend(1 + 2−2γ
γ )) and Cov(ϵi,t, ϵj,t−s) =

1
1−(1−γ)2 ((1 − γ)|s|ρdi,j σ2 + σ2

trend(1 + 2−2γ
γ ) × δi,j).

In presence of observation error, we have :

Mean(λi,t) = c(1 − γ)t − (r + 0.5σ2)1 − (1 − γ)t

γ
− 0.5σ2

obs (A29)

V ar(λi,t) = 1
1 − (1 − γ)2 (σ2 + σ2

obs + σ2
trend(1 + 2 − 2γ

γ
))((1 − γ)2t(σ2

0 − 1) + 1)

− 2(
θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2
+ σ2

trend

γ
) (1 − γ)t − (1 − γ)2t

γ

(A30)
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and
Cov(λi,t, λj,t−s) = Cov(ϵi,t, ϵi,t−s) (A31)

Asymptotically in t with fixed s, we have :
Mean(λi,t) = −(r+0.5σ2)

γ −0.5σ2
obs, V ar(λi,t) = 1

1−(1−γ)2 (σ2 +σ2
obs +σ2

trend(1+ 2−2γ
γ )) and Cov(λi,t, λj,t−s) =

1
1−(1−γ)2 ((1 − γ)|s|ρdi,j σ2 + σ2

trend(1 + 2−2γ
γ ) × δi,j).

Regression models without temporal variation of trends

Here there is not difference between marginal and conditional forms because the model do not contains sites
effects. We have :

lnNi,t = lnKi,0 + rt + ϵi,t

= µ + ωxi + rt + ϵi,t

where ϵi,t is a normally distributed multivariate variable with variance matrix Φ and Mean(ϵi,t) = c(1 −
γ)t − (r + 0.5σ2) 1−(1−γ)t

γ . Thus, non linear regression model is :

lnNi,t = µ + ωxi + Mean(ϵi,t) + rt + ϵ′
i,t

= µ + ωxi − r + 0.5σ2

γ
+ rt + (1 − γ)t(c + r + 0.5σ2

γ
) + ϵ′

i,t

(A32)

with ϵ′
i,t = ϵi,t − Mean(ϵi,t) a centered multivariate gaussian variable. In this model, − r+0.5σ2

γ and r are
respectively the intercept and slope of the linear term t, (1 − γ)t(c + r+0.5σ2

γ ) a non linear term in t and ϵ′
i,t,

the residuals. In the stationary regime, this model becomes linear because c = − r+0.5σ2

γ :

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + ϵ′

i,t

r (a deterministic trend in the equilibrium population sizes), γ (the intensity of temporal dependence), ρ
(the intensity of spatial correlation), σ (environmental variation), µ, ω, c, θ and σ0 are the parameters that
will have to be estimated in this model.
Consequently the variance-covariance matrix Φ of the residuals is :

Stationary form
According to eq.A20 and A21, the stationary form of Φ is :

Φ = σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 (A33)

where

Pi,j =


ρdi,j (1 − γ)βρdi,j . . . (1 − γ)β(T −1)ρdi,j

(1 − γ)βρdi,j ρdi,j . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j . . . . . . ρdi,j



Non stationary form
Referring to eq.A20 and A21, the non stationary form of Φ is :

Φ =


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 (A34)
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with

Pi,j =


ζ0,0

i,j ζ0,1
i,j . . . ζ0,T −1

i,j

ζ1,0
i,j ζ1,1

i,j . . . . . .

. . . . . . . . . . . .

ζT −1,0
i,j . . . . . . ζT −1,T −1

i,j



where ζt1,t2
i,j = (1−γ)t1+t2 ρdi,j σ2

1−(1−γ)2 (σ2
0 − 1) + (1−γ)|t1−t2|ρdi,j σ2

1−(1−γ)2

Model with observation error
Let us introduce independent and normally distributed observation errors with variance σ2

obs in order to
account for observation error. We assume that observation errors are independent (Cov(vi,t, vj,s) = 0) and
that ecological deviations from equilibrium and observation errors are independent (Cov(ϵi,t, vi,t) = 0). One
may want to introduce that additional observation error term in the statistical model as follows :

Stationary form

Φ = σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2
obs


IT 0 . . . 0
0 IT . . . 0

. . . . . . . . . . . .
0 0 . . . IT

 (A35)

where

Pi,j =


ρdi,j (1 − γ)βρdi,j . . . (1 − γ)β(T −1)ρdi,j

(1 − γ)βρdi,j ρdi,j . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j . . . . . . ρdi,j



Non stationary form

Φ =


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2
obs


IT 0 . . . 0
0 IT . . . 0

. . . . . . . . . . . .
0 0 . . . IT

 (A36)

with

Pi,j =


ζ0,0

i,j ζ0,1
i,j . . . ζ0,T −1

i,j

ζ1,0
i,j ζ1,1

i,j . . . . . .

. . . . . . . . . . . .

ζT −1,0
i,j . . . . . . ζT −1,T −1

i,j



where ζt1,t2
i,j = (1−γ)t1+t2 ρdi,j σ2

1−(1−γ)2 (σ2
0 − 1) + (1−γ)|t1−t2|ρdi,j σ2

1−(1−γ)2

Modeling of Yi,t = lnNi,t − lnNi,0
Instead of modeling lnNi,t over time, it is also possible to model Yi,t = lnNi,t − lnNi,0. This model may
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have the advantage to give a better estimation of the slope (r in our case). The number of parameters to be
estimated is less than the previous model because here we do not model lnKi,0. Thus, we have

Yi,t = lnNi,t − lnNi,0

= lnKi,0 + rt + ϵi,t − lnKi,0 − ϵi,0

= Mean(ϵi,t − ϵi,0) + rt + τi,t

= −(r + 0.5σ2

γ
+ c) + rt + (1 − γ)t(c + r + 0.5σ2

γ
) + τi,t

(A37)

where τi,t = ϵi,t − ϵi,0 − Mean(ϵi,t − ϵi,0) = ϵ′
i,t − ϵ′

i,0 is a normally distributed multivariate variable with
unknown variance-covariance matrix and Mean(τi,t) = 0. In this model, the intercept is −( r+0.5σ2

γ + c)
while r is the slope of the linear term t, (1 − γ)t(c + r+0.5σ2

γ ) a non linear term and τi,t, the residuals. In
the stationary regime (c = − r+0.5σ2

γ ), this model becomes linear without intercept :

Yi,t = rt + τi,t (A37a)

Let derive variance and covariance of τi,t.

Variance
V ar(τi,t) = V ar(ϵi,t) + V ar(ϵi,0) − 2Cov(ϵi,t, ϵi,0)

= V ar(ϵi,t) + V ar(ϵi,0) − 2(1 − γ)tV ar(ϵi,0)
= V ar(ϵi,t) + V ar(ϵi,0)(1 − 2(1 − γ)t)

= σ2

1 − (1 − γ)2 ((1 − γ)2t(σ2
0 − 1) + 1) + σ2σ2

0
1 − (1 − γ)2 (1 − 2(1 − γ)t)

= σ2

1 − (1 − γ)2 (σ2
0((1 − γ)2t + 1 − 2(1 − γ)t) − (1 − γ)2t + 1)

= σ2

1 − (1 − γ)2 (σ2
0((1 − γ)t − 1)2 − (1 − γ)2t + 1)

= σ2

1 − (1 − γ)2 ((1 − γ)t − 1)(σ2
0((1 − γ)t − 1) − ((1 − γ)t + 1))

(A38)

In the stationary regime, we obtain V ar(τi,t) = σ2

1−(1−γ)2 (σ2
0 + 1).

Covariance

Cov(τi,t, τj,t−s) = Cov(ϵi,t − ϵi,0, ϵj,t−s − ϵj,0)
= Cov(ϵi,t, ϵj,t−s) − Cov(ϵi,t, ϵj,0) − Cov(ϵi,0, ϵj,t−s) + Cov(ϵi,0, ϵj,0)
= Cov(ϵi,t, ϵj,t−s) − (1 − γ)tCov(ϵi,0, ϵj,0) − (1 − γ)t−sCov(ϵi,0, ϵj,0) + Cov(ϵi,0, ϵj,0)
= Cov(ϵi,t, ϵj,t−s) + Cov(ϵi,0, ϵj,0)(1 − (1 − γ)t − (1 − γ)t−s)

As we showed previously,

Cov(ϵi,t, ϵj,t−s) = (1 − γ)2t−s(Cov(ϵi,0, ϵj,0) − ρdi,j σ2

1 − (1 − γ)2 ) + (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2
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Then, we have :

Cov(τi,t, τj,t−s) = (1 − γ)2t−s(Cov(ϵi,0, ϵj,0) − ρdi,j σ2

1 − (1 − γ)2 ) + (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2 − Cov(ϵi,0, ϵj,0)((1 − γ)t + (1 − γ)t−s − 1)

= Cov(ϵi,0, ϵj,0)((1 − γ)2t−s − (1 − γ)t − (1 − γ)t−s + 1) − (1 − γ)2t−sρdi,j σ2

1 − (1 − γ)2 + (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2

= Cov(ϵi,0, ϵj,0)((1 − γ)2t−s − (1 − γ)t − (1 − γ)t−s + 1) + ρdi,j σ2

1 − (1 − γ)2 ((1 − γ)|s| − (1 − γ)2t−s)

= ρdi,j σ2σ2
0

1 − (1 − γ)2 ((1 − γ)2t−s − (1 − γ)t − (1 − γ)t−s + 1) + ρdi,j σ2

1 − (1 − γ)2 ((1 − γ)|s| − (1 − γ)2t−s)

= ρdi,j σ2

1 − (1 − γ)2 (σ2
0((1 − γ)2t−s − (1 − γ)t − (1 − γ)t−s + 1) − (1 − γ)2t−s + (1 − γ)|s|)

(A39)

• If i = j

Cov(τi,t, τj,t−s) = σ2

1 − (1 − γ)2 (σ2
0((1 − γ)2t−s − (1 − γ)t − (1 − γ)t−s + 1) − (1 − γ)2t−s + (1 − γ)|s|)

• If i ̸= j

Cov(τi,t, τj,t−s) = ρdi,j σ2

1 − (1 − γ)2 (σ2
0((1 − γ)2t−s − (1 − γ)t − (1 − γ)t−s + 1)) − (1 − γ)2t−s + (1 − γ)|s|)

In the stationary regime, we obtain Cov(τi,t, τj,t−s) = ρdi,j σ2

1−(1−γ)2 (1+(1−γ)|s|)+(1−(1−γ)t−(1−γ)t−s).

Denoting Ψ, the variance-covariance matrix of τi,t and according to eq.A35,A36 and A43, we can deduce
that :

Stationary form
The stationary form of Ψ is :

Ψ = Φ + σ2

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S



= σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S


(A40)

where

Pi,j =


ρdi,j (1 − γ)βρdi,j . . . (1 − γ)β(T −1)ρdi,j

(1 − γ)βρdi,j ρdi,j . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j . . . . . . ρdi,j


and

Qi,j =


χ0,0

i,j χ0,β
i,j . . . χ

0,β(T −1)
i,j

χβ,0
i,j χβ,β

i,j . . . . . .

. . . . . . . . . . . .

χ
β(T −1),0
i,j . . . . . . χ

β(T −1),β(T −1)
i,j


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with χt1,t2
i,j = ρdi,j (1 − (1 − γ)t1 − (1 − γ)t2)

Non stationary form
The non stationary form of Ψ is :

Ψ = Φ + σ2σ2
0

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S



=


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2σ2
0

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S


(A41)

where

Pi,j =


ζ0,0

i,j ζ0,β
i,j . . . ζ

0,β(T −1)
i,j

ζβ,0
i,j ζβ,β

i,j . . . . . .

. . . . . . . . . . . .

ζ
β(T −1),0
i,j . . . . . . ζ

β(T −1),β(T −1)
i,j


and

Qi,j =


χ0,0

i,j χ0,β
i,j . . . χ

0,β(T −1)
i,j

χβ,0
i,j χβ,β

i,j . . . . . .

. . . . . . . . . . . .

χ
β(T −1),0
i,j . . . . . . χ

β(T −1),β(T −1)
i,j


with ζt1,t2

i,j = (1−γ)t1+t2 ρdi,j σ2

1−(1−γ)2 (σ2
0 − 1) + (1−γ)|t1−t2|ρdi,j σ2

1−(1−γ)2 and χt1,t2
i,j = ρdi,j (1 − (1 − γ)t1 − (1 − γ)t2)

Model with observation error
If there is an observation error, the model (eq.A37) becomes :

Yi,t = lnÑi,t − lnÑi,0

= lnNi,t − 0.5σ2
obs + vi,t − lnNi,0 + 0.5σ2

obs − vi,0

= lnNi,t − lnNi,0 + vi,t − vi,0

= rt + ϵi,t − ϵi,0 + vi,t − vi,0

= −(r + 0.5σ2

γ
+ c) + rt + (1 − γ)t(c + r + 0.5σ2

γ
) + τ ′

i,t

(A42)

where τ ′
i,t = τi,t +vi,t −vi,0 is a normally distributed multivariate variable with unknown variance-covariance

matrix and Mean(τ ′
i,t) = 0.

Let derive variance and covariance of τ ′
i,t.

Variance
V ar(τ ′

i,t) = V ar(τi,t) + V ar(vi,t) + V ar(vi,0) − 2Cov(vi,t, vi,0)

Since,

Cov(vi,t, vi,0) =
{

0 if t > 0
σ2

obs if i = j
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We have,

V ar(τ ′
i,t) = V ar(τi,t) + 2σ2

obsIt>0

= σ2

1 − (1 − γ)2 (σ2
0((1 − γ)2t + 1 − 2(1 − γ)t) − (1 − γ)2t + 1) + 2σ2

obsIt>0
(A43)

because V ar(vi,t) = V ar(vi,0) = σ2
obs

In the stationary regime, we obtain V ar(τ ′
i,t) = σ2

1−(1−γ)2 (2 − 2(1 − γ)t) + 2σ2
obsIt>0.

Covariance

Cov(τ ′
i,t, τ ′

j,t−s) = Cov(τi,t + vi,t − vi,0, τj,t−s + vj,t−s − vj,0)
= Cov(τi,t, τj,t−s) + Cov(τi,t, vj,t−s) − Cov(τi,t, vj,0) + Cov(vi,t, τj,t−s) + Cov(vi,t, vj,t−s)
− Cov(vi,t, vj,0) − Cov(vi,0, τj,t−s) − Cov(vi,0, vj,t−s) + Cov(vi,0, vj,0)

(A44)

Case 1 : i ̸= j
If i ̸= j, we have :

Cov(τ ′
i,t, τ ′

j,t−s) = Cov(τi,t, τi,t−s)

because Cov(vi,t, vj,s) = 0 and Cov(τi,t, vj,t) = 0
In the stationary regime, we obtain Cov(τ ′

i,t, τ ′
j,t−s) → ρdi,j σ2

1−(1−γ)2 (1 + (1 − γ)|s|)

Case 2 : i = j
If i = j, we have :

Cov(τ ′
i,t, τ ′

i,t−s) = Cov(τi,t, τi,t−s) + Cov(τi,t, vi,t−s) − Cov(τi,t, vi,0) + Cov(vi,t, τi,t−s) + Cov(vi,t, vi,t−s)
− Cov(vi,t, vi,0) − Cov(vi,0, τi,t−s) − Cov(vi,0, vi,t−s) + σ2

obs

• If s ̸= 0
We have :

Cov(τ ′
i,t, τ ′

i,t−s) = Cov(τi,t, τi,t−s) − Cov(vi,t, vi,0) − Cov(vi,0, vi,t−s) + σ2
obs

because Cov(τi,t, vi,t−s) = 0 and Cov(vi,t, vi,t−s) = 0 if t ̸= 0.
As we showed above, Cov(vi,t, vi,0) = σ2

obsIt=0 and Cov(vi,0, vi,t−s) = σ2
obsIt=s

So,
Cov(τ ′

i,t, τ ′
i,t−s) = Cov(τi,t, τi,t−s) + σ2

obs(1 − It=0 − It=s)

In the stationary regime, Cov(τ ′
i,t, τ ′

j,t−s) → ρdi,j σ2

1−(1−γ)2 ((1 − γ)|s| + (1 − (1 − γ)t − (1 − γ)t−s) + σ2
obs(1 −

It=0 − It=s)

• If s = 0
We have :

Cov(τ ′
i,t, τ ′

i,t) = V ar(τ ′
i,t)

In the stationary regime, we have Cov(τ ′
i,t, τ ′

i,t) = σ2

1−(1−γ)2 (2 − 2(1 − γ)t) + 2σ2
obsIt>0.

Denoting ∆, the structure of the variance-covariance matrix of τ ′
i,t, we obtain :
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Stationary form
The stationary form of ∆ is

∆ = Ψ + σ2
obs


K 0 . . . 0
0 K . . . 0

. . . . . . . . . . . .
0 0 . . . K



= σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S

 + σ2
obs


K 0 . . . 0
0 K . . . 0

. . . . . . . . . . . .
0 0 . . . K


(A45)

where

Pi,j =


ρdi,j (1 − γ)βρdi,j . . . (1 − γ)β(T −1)ρdi,j

(1 − γ)βρdi,j ρdi,j . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j . . . . . . ρdi,j



Qi,j =


ρdi,j ρdi,j . . . ρdi,j

ρdi,j ρdi,j . . . . . .
. . . . . . . . . . . .

ρdi,j . . . . . . ρdi,j


and

K =


0 0 . . . 0
0 2 1 1

. . . 1 2 . . .
0 1 . . . 2


with K, a matrix f dimension T × T

Non asymptotic form
The non stationary form of ∆ is

∆ = Ψ + σ2
obs


K 0 . . . 0
0 K . . . 0

. . . . . . . . . . . .
0 0 . . . K



=


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2σ2
0

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S

 + σ2
obs


K 0 . . . 0
0 K . . . 0

. . . . . . . . . . . .
0 0 . . . K


(A46)

where

Pi,j =


ζ0,0

i,j ζ0,β
i,j . . . ζ

0,β(T −1)
i,j

ζβ,0
i,j ζβ,β

i,j . . . . . .

. . . . . . . . . . . .

ζ
β(T −1),0
i,j . . . . . . ζ

β(T −1),β(T −1)
i,j



Qi,j =


χ0,0

i,j χ0,β
i,j . . . χ

0,β(T −1)
i,j

χβ,0
i,j χβ,β

i,j . . . . . .

. . . . . . . . . . . .

χ
β(T −1),0
i,j . . . . . . χ

β(T −1),β(T −1)
i,j


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and

K =


0 0 . . . 0
0 2 1 1

. . . 1 2 . . .
0 1 . . . 2


with

ζt1,t2
i,j = (1−γ)t1+t2 ρdi,j σ2

1−(1−γ)2 (σ2
0 − 1) + (1−γ)|t1−t2|ρdi,j σ2

1−(1−γ)2 and χt1,t2
i,j = ρdi,j (1 − (1 − γ)t1 − (1 − γ)t2)

Regression models with temporal variation of trends

Marginal approach
In the case where there is variation in temporal trends among subpopulations, the regression model (eq.A32)
becomes :

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + (1 − γ)t(c + r + 0.5σ2

γ
) + ϵ′

i,t + ηit (A47)

Here the residuals become Ei,t = ϵ′
i,t + ηit. In the stationary regime, this model becomes linear because

c = − r+0.5σ2

γ and we obtain

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + Ei,t

r (a deterministic trend in the equilibrium population sizes), γ (the intensity of temporal dependence),
ρ (the intensity of spatial correlation), σ (environmental variation), µ, ω, c, σtrend, θ and σ0 are the
parameters that will have to be estimated in the non-stationary form of the model.

Now we can derive mean and variance-correlation structure of the residuals, Ei,t, for this model.

Mean of residuals
As Mean(ϵ′

i,t) = 0 and Mean(ηi) = 0 then Mean(Ei,t) = 0

Variance of residuals
V ar(Ei,t) = V ar(ηit + ϵ′

i,t)
= t2σ2

trend + V ar(ϵ′
i,t) + 2tCov(ηi, ϵi,t)

= t2σ2
trend + V ar(ϵi,t) + 2tCov(ηi, ϵi,t)

Using the same recurrence in eq.A12, we have

Cov(ϵi,t, ηi) = (1 − γ)tCov(ϵi,0, ηi) − σ2
trend

1 − (1 − γ)t

γ

Thus,

V ar(Ei,t) = V ar(ϵ′
i,t) + t2σ2

trend − 2tσ2
trend

γ
+ 2t(1 − γ)t(Cov(ϵi,0, ηi) + σ2

trend

γ
)

= V ar(ϵi,t) + t2σ2
trend − 2tσ2

trend

γ
+ 2t(1 − γ)t(

θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2
+ σ2

trend

γ
)

(A48)

because Cov(ϵi,0, ηi) = θσ0σtrend

√
σ2+σ2

trend
(1+ 2−2γ

γ )√
1−(1−γ)2

and V ar(ϵ′
i,t) = V ar(ϵi,t)

In the stationary regime, we have : V ar(ϵi,0) = V ar(ϵi,t) = 1
1−(1−γ)2 (σ2 + σ2

trend(1 + 2−2γ
γ )) and
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Cov(ϵi,0, ηi) = − σ2
trend

γ . Then, we obtain : V ar(Ei,t) = 1
1−(1−γ)2 (σ2 + σ2

trend(1 + 2−2γ
γ )) + t2σ2

trend − 2tσ2
trend

γ

Covariance of residuals
We have

Cov(Ei,t, Ej,t−s) = Cov(ηit + ϵi,t − Mean(ϵi,t), ηj(t − s) + ϵj,t−s − Mean(ϵj,t−s))
= t(t − s)Cov(ηi, ηj) + tCov(ηi, ϵj,t−s) + (t − s)Cov(ηj , ϵi,t) + Cov(ϵi,t, ϵj,t−s)

(A49)

Case 1 : i = j
If i = j, we have :

Cov(Ei,t, Ej,t−s) = Cov(ϵi,t, ϵi,t−s) + σ2
trend(t(t − s) − t

1 − (1 − γ)t−s

γ
− (t − s)1 − (1 − γ)t

γ
)

+ Cov(ϵi,0, ηi)(t(1 − γ)t−s + (t − s)(1 − γ)t)

In the stationary regime, we have : Cov(ϵi,t, ϵi,t−s) = 1
1−(1−γ)2 ((1 − γ)|s|σ2 + σ2

trend(1 + 2−2γ
γ )) and

Cov(ϵi,0, ηi) = − σ2
trend

γ . Then, we obtain : Cov(Ei,t, Ei,t−s) = 1
1−(1−γ)2 ((1 − γ)|s|σ2 + σ2

trend(1 + 2−2γ
γ )) +

σ2
trend(t(t − s) − 2t−s

γ )

Case 2 : i ̸= j
If i ̸= j, we have Cov(ηi, ηj) = 0, Cov(ηi, ϵj,t−s) = 0 and Cov(ηj , ϵi,t) = 0.
So, Cov(Ei,t, Ej,t−s) = Cov(ϵi,t, ϵj,t−s). In the stationary regime, we have : Cov(Ei,t, Ej,t−s) = (1−γ)|s|ρdi,j σ2

1−(1−γ)2

Denoting Λ the variance-covariance matrix of the residuals Ei,t, we can easily see that Λ is a sum of
matrices :

Stationary form
By referring to eq.A16, we have :

Λ = Λ + σ2
trend

[
C1,1 0 ... 0

0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]

= σ2

1 − (1 − γ)2

[
P1,1 P1,2 ... P1,S

P2,1 P2,2 ... P2,S
... ... ... ...

PS,1 PS,2 ... PS,S

]
+ σ2

trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[ J 0 ... 0

0 J ... 0
... ... ... ...
0 0 ... J

]
+ σ2

trend

[
C1,1 0 ... 0

0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]
(A50)

where

Pi,j =


ρdi,j σ2 (1 − γ)βρdi,j σ2 . . . (1 − γ)β(T −1)ρdi,j σ2

(1 − γ)βρdi,j σ2 ρdi,j σ2 . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j σ2 . . . . . . ρdi,j σ2


and

J =


1 1 . . . 1
1 1 . . . . . .

. . . . . . . . . . . .
1 . . . . . . 1


and

Ci,j =


c0,0

i,j c0,β
i,j . . . c

0,β(T −1)
i,j

cβ,0
i,j cβ,β

i,j . . . . . .

. . . . . . . . . . . .

c
β(T −1),0
i,j . . . . . . c

β(T −1),β(T −1)
i,j


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with ct1,t2
i,j = t1t2 − t1+t2

γ

Non asymptotic form
By referring to eq.A17, we obtain :

Λ = σ2

1 − (1 − γ)2

[
P1,1 P1,2 ... P1,S

P2,1 P2,2 ... P2,S
... ... ... ...

PS,1 PS,2 ... PS,S

]
+ σ2

0σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

Q1,1 Q1,2 ... Q1,S

Q2,1 Q2,2 ... Q2,S
... ... ... ...

QS,1 QS,2 ... QS,S

]
+ σ2

trend

[
L1,1 0 ... 0

0 L2,2 ... 0
... ... ... ...
0 0 ... LS,S

]

+ σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

C1,1 0 ... 0
0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]
+

θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2

[
G1,1 0 ... 0

0 G2,2 ... 0
... ... ... ...
0 0 ... GS,S

]
(A51)

where

Pi,j =


ζ0,0

i,j ζ0,β
i,j . . . ζ

0,β(T −1)
i,j

ζβ,0
i,j ζβ,β

i,j . . . . . .

. . . . . . . . . . . .

ζ
β(T −1),0
i,j . . . . . . ζ

β(T −1),β(T −1)
i,j



Qi,j =


q0,0

i,j q0,β
i,j . . . q

0,β(T −1)
i,j

qβ,0
i,j qβ,β

i,j . . . . . .

. . . . . . . . . . . .

q
β(T −1),0
i,j . . . . . . q

β(T −1),β(T −1)
i,j



Li,j =


l0,0
i,j l0,β

i,j . . . l
0,β(T −1)
i,j

lβ,0
i,j lβ,β

i,j . . . . . .

. . . . . . . . . . . .

l
β(T −1),0
i,j . . . . . . l

β(T −1),β(T −1)
i,j



Ci,j =


c0,0

i,j c0,β
i,j . . . c

0,β(T −1)
i,j

cβ,0
i,j cβ,β

i,j . . . . . .

. . . . . . . . . . . .

c
β(T −1),0
i,j . . . . . . c

β(T −1),β(T −1)
i,j


and

Gi,j =


g0,0

i,j g0,β
i,j . . . g

0,β(T −1)
i,j

gβ,0
i,j gβ,β

i,j . . . . . .

. . . . . . . . . . . .

g
β(T −1),0
i,j . . . . . . g

β(T −1),β(T −1)
i,j


with ζt1,t2

i,j = ρdi,j ((1 − γ)t1+t2σ2
0 + (1 − γ)|t1−t2|(1 − (1 − γ)t1+t2−|t1−t2|)), qt1,t2

i,j = (1 − γ)t1+t2 ,
ct1,t2

i,j = 1 − (1 − γ)t1+t2−|t1−t2|, lt1,t2
i,j = t1t2 − t1

1−(1−γ)t2

γ − t2
1−(1−γ)t1

γ − (1−γ)t1 −(1−γ)t2

γ × 1−(1−γ)t2

γ and
gt1,t2

i,j = t1(1 − γ)t2 + t2(1 − γ)t1 − (1−γ)t1 −(1−γ)t2

γ × 1−(1−γ)t2

γ − (1−γ)t1+t2−|t1−t2|−(1−γ)t1+t2

γ

Model with observation error
Here we assume that observation errors are not depend on variation in temporal trends of each sub-
population (Cov(vi,t, ηi) = 0). One may want to introduce an additional observation error term in the
statistical model as follows :
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Stationary form
By referring to eq.A30, A31 and A50, we have :

Λ = σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)


J 0 . . . 0
0 J . . . 0

. . . . . . . . . . . .
0 0 . . . J



+ σ2
trend


C1,1 0 . . . 0

0 C2,2 . . . 0
. . . . . . . . . . . .
0 0 . . . CS,S

 + σ2
obs

1 − (1 − γ)2


IT 0 . . . 0
0 IT . . . 0

. . . . . . . . . . . .
0 0 . . . IT


(A52)

Non stationary form

Λ = σ2

1 − (1 − γ)2

[
P1,1 P1,2 ... P1,S

P2,1 P2,2 ... P2,S
... ... ... ...

PS,1 PS,2 ... PS,S

]
+ σ2

0σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

Q1,1 Q1,2 ... Q1,S

Q2,1 Q2,2 ... Q2,S
... ... ... ...

QS,1 QS,2 ... QS,S

]
+ σ2

trend

[
L1,1 0 ... 0

0 L2,2 ... 0
... ... ... ...
0 0 ... LS,S

]

+ σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

C1,1 0 ... 0
0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]
+

θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2

[
G1,1 0 ... 0

0 G2,2 ... 0
... ... ... ...
0 0 ... GS,S

]

+ σ2
obs

1 − (1 − γ)2

[ IT 0 ... 0
0 IT ... 0
... ... ... ...
0 0 ... IT

]
(A53)

Modeling of Yi,t = lnNi,t − lnNi,0
As for the model without sites effects, we will also model Yi,t = lnNi,t − lnNi,0. Based to eq.A37, we have

Yi,t = lnNi,t − lnNi,0

= lnKi,0 + rt + ηit + ϵi,t − lnKi,0 − ϵi,0

= −(r + 0.5σ2

γ
+ c) + rt + (1 − γ)t(c + r + 0.5σ2

γ
) + E′

i,t

(A54)

where E′
i,t = τi,t + ηit is a normally distributed multivariate variable with parametrized variance-covariance

matrix and Mean(E′
i,t) = 0. In this model, the intercept is −( r+0.5σ2

γ + c) while r is the slope of the linear
term t, (1−γ)t(c+ r+0.5σ2

γ ) a non linear term and E′
i,t, the residuals. In the stationary regime (c = − r+0.5σ2

γ ),
this model becomes linear without intercept :

Yi,t = rt + E′
i,t (A54a)

Let us derive variance and covariance of E′
i,t.

Variance
V ar(E′

i,t) = V ar(τi,t + ηit)
= V ar(τi,t) + t2σ2

trend + 2tCov(ηi, τi,t)
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Cov(ηi, τi,t) = Cov(ϵ′
i,t − ϵ′

i,0, ηi)
= Cov(ηi, ϵ′

i,t) − Cov(ηi, ϵ′
i,0)

= Cov(ηi, ϵi,t) − Cov(ηi, ϵi,0)

= (1 − γ)tCov(ϵi,0, ηi) − σ2
trend

1 − (1 − γ)t

γ
− Cov(ϵi,0, ηi)

= (1 − γ)t(Cov(ϵi,0, ηi) + σ2
trend

γ
) − (Cov(ϵi,0, ηi) + σ2

trend

γ
)

= (Cov(ϵi,0, ηi) + σ2
trend

γ
)((1 − γ)t − 1)

So,

V ar(E′
i,t) = V ar(τi,t) + t2σ2

trend + 2t(Cov(ϵi,0, ηi) + σ2
trend

γ
)((1 − γ)t − 1) (A55)

In the stationary regime, we have : V ar(ϵi,0) = V ar(ϵi,t) = 1
1−(1−γ)2 (σ2 +σ2

trend(1+ 2−2γ
γ ))(2−2(1−γ)t) and

Cov(ϵi,0, ηi) = − σ2
trend

γ . Then, we obtain : V ar(E′
i,t) = 1

1−(1−γ)2 (σ2+σ2
trend(1+ 2−2γ

γ ))(2−2(1−γ)t)+t2σ2
trend

Covariance of residuals
We have

Cov(E′
i,t, E′

j,t−s) = Cov(τi,t + ηit, τj,t−s + ηj(t − s))
= Cov(τi,t, τj,t−s) + (t − s)Cov(τi,t, ηj) + tCov(ηi, τj,t−s) + t(t − s)Cov(ηi, ηj)
= Cov(ϵi,t, ϵj,t−s) + Cov(ϵi,0, ϵj,0)(1 − (1 − γ)t − (1 − γ)t−s) + (t − s)Cov(τi,t, ηj)
+ tCov(ηi, τj,t−s) + t(t − s)Cov(ηi, ηj)

(A56)

Case 1 : i = j
If i = j, we have :

Cov(E′
i,t, E′

i,t−s) = Cov(ϵi,t, ϵi,t−s) + V ar(ϵi,0)(1 − (1 − γ)t − (1 − γ)t−s) + t(t − s)σ2
trend

+ (Cov(ϵi,0, ηi) + σ2
trend

γ
)((t − s)((1 − γ)t − 1) + t((1 − γ)t−s − 1))

In the stationary regime, we have : Cov(ϵi,t, ϵj,t−s) = 1
1−(1−γ)2 ((1 − γ)|s|ρdi,j σ2 + σ2

trend(1 + 2−2γ
γ ) × δi,j),

V ar(ϵi,0) = 1
1−(1−γ)2 (σ2 + σ2

trend(1 + 2−2γ
γ )), Cov(ϵi,0, ηi) = − σ2

trend

γ and Cov(τi,t, ηi) = 0.

So, we obtain :

Cov(E′
i,t, E′

j,t−s) = 1
1 − (1 − γ)2 ((1 − γ)|s|σ2 + σ2

trend(1 + 2 − 2γ

γ
)) + t(t − s)σ2

trend

+ 1
1 − (1 − γ)2 (σ2 + σ2

trend(1 + 2 − 2γ

γ
))(1 − (1 − γ)t − (1 − γ)t−s)

Case 2 : i ̸= j
If i ̸= j, we have Cov(ηi, ηj) = 0, Cov(ηi, τj,t−s) = 0 and Cov(ηj , τi,t) = 0. So, Cov(E′

i,t, E′
j,t−s) =

Cov(ϵi,t, ϵj,t−s) + Cov(ϵi,0, ϵj,0)(1 − (1 − γ)t − (1 − γ)t−s)
In the stationary regime, we have : Cov(ϵi,t, ϵj,t−s) = (1−γ)|s|ρdi,j σ2

1−(1−γ)2 and Cov(ϵi,0, ϵj,0) = 1
1−(1−γ)2 (ρdi,j σ2 +

σ2
trend(1 + 2−2γ

γ )). Then, we obtain :

Cov(E′
i,t, E′

j,t−s) = (1 − γ)|s|ρdi,j σ2

1 − (1 − γ)2 + 1
1 − (1 − γ)2 (ρdi,j σ2 + σ2

trend(1 + 2 − 2γ

γ
))(1 − (1 − γ)t − (1 − γ)t−s)
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Denoting Ψ the variance-covariance matrix of of the residuals E′
i,t, we can easily see that Ψ is a sum of

matrices.

Stationary form
The stationary form of Ψ is :

Ψ = σ2

1 − (1 − γ)2


P1,1 P1,2 . . . P1,S

P2,1 P2,2 . . . P2,S

. . . . . . . . . . . .
PS,1 PS,2 . . . PS,S

 + σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)


J 0 . . . 0
0 J . . . 0

. . . . . . . . . . . .
0 0 . . . J



+ σ2
trend


C1,1 0 . . . 0

0 C2,2 . . . 0
. . . . . . . . . . . .
0 0 . . . CS,S

 + σ2

1 − (1 − γ)2


Q1,1 Q1,2 . . . Q1,S

Q2,1 Q2,2 . . . Q2,S

. . . . . . . . . . . .
QS,1 QS,2 . . . QS,S



+ σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)


L1,1 L1,2 . . . L1,S

L2,1 L2,2 . . . L2,S

. . . . . . . . . . . .
LS,1 LS,2 . . . LS,S



(A57)

with

Pi,j =


ρdi,j σ2 (1 − γ)βρdi,j σ2 . . . (1 − γ)β(T −1)ρdi,j σ2

(1 − γ)βρdi,j σ2 ρdi,j σ2 . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j σ2 . . . . . . ρdi,j σ2



J =


1 1 . . . 1
1 1 . . . . . .

. . . . . . . . . . . .
1 . . . . . . 1



Ci,j =


c0,0

i,j c0,β
i,j . . . c

0,β(T −1)
i,j

cβ,0
i,j cβ,β

i,j . . . . . .

. . . . . . . . . . . .

c
β(T −1),0
i,j . . . . . . c

β(T −1),β(T −1)
i,j



Qi,j =


χ0,0

i,j χ0,β
i,j . . . χ

0,β(T −1)
i,j

χβ,0
i,j χβ,β

i,j . . . . . .

. . . . . . . . . . . .

χ
β(T −1),0
i,j . . . . . . χ

(β(T −1),β(T −1)
i,j


and

Li,j =


l0,0
i,j l0,β

i,j . . . l
0,β(T −1)
i,j

lβ,0
i,j lβ,β

i,j . . . . . .

. . . . . . . . . . . .

l
β(T −1),0
i,j . . . . . . l

β(T −1),β(T −1)
i,j


where ct1,t2

i,j = t1t2, χt1,t2
i,j = ρdi,j (1 − (1 − γ)t1 − (1 − γ)t2) and lt1,t2

i,j = 1 − (1 − γ)t1 − (1 − γ)t2
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Non stationary form
The non stationary form of Ψ is :

Ψ = σ2

1 − (1 − γ)2

[
P1,1 P1,2 ... P1,S

P2,1 P2,2 ... P2,S
... ... ... ...

PS,1 PS,2 ... PS,S

]
+ σ2

0σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

Q1,1 Q1,2 ... Q1,S

Q2,1 Q2,2 ... Q2,S
... ... ... ...

QS,1 QS,2 ... QS,S

]
+ σ2

trend

[
C1,1 0 ... 0

0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]

+ σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

L1,1 0 ... 0
0 L2,2 ... 0
... ... ... ...
0 0 ... LS,S

]
+

θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2

[
G1,1 0 ... 0

0 G2,2 ... 0
... ... ... ...
0 0 ... GS,S

]
(A58)

where

Pi,j =


ζ0,0

i,j ζ0,β
i,j . . . ζ

0,β(T −1)
i,j

ζβ,0
i,j ζβ,β

i,j . . . . . .

. . . . . . . . . . . .

ζ
β(T −1),0
i,j . . . . . . ζ

β(T −1),β(T −1)
i,j



Qi,j =


q0,0

i,j q0,β
i,j . . . q

0,β(T −1)
i,j

qβ,0
i,j qβ,β

i,j . . . . . .

. . . . . . . . . . . .

q
β(T −1),0
i,j . . . . . . q

β(T −1),β(T −1)
i,j



Ci,j =


c0,0

i,j c0,β
i,j . . . c

0,β(T −1)
i,j

cβ,0
i,j cβ,β

i,j . . . . . .

. . . . . . . . . . . .

c
β(T −1),0
i,j . . . . . . c

β(T −1),β(T −1)
i,j



Li,j =


l0,0
i,j l0,β

i,j . . . l
0,β(T −1)
i,j

lβ,0
i,j lβ,β

i,j . . . . . .

. . . . . . . . . . . .

l
β(T −1),0
i,j . . . . . . l

β(T −1),β(T −1)
i,j


and

Gi,j =


g0,0

i,j g0,β
i,j . . . g

0,β(T −1)
i,j

gβ,0
i,j gβ,β

i,j . . . . . .

. . . . . . . . . . . .

g
β(T −1),0
i,j . . . . . . g

β(T −1),β(T −1)
i,j


with ζt1,t2

i,j = ρdi,j (σ2
0((1 − γ)t1+t2 + 1 − (1 − γ)t1 − (1 − γ)t2) + (1 − γ)|t1−t2| − (1 − γ)t1+t2),

qt1,t2
i,j = (1 − γ)t1+t2 + 1 − (1 − γ)t1 − (1 − γ)t2 , lt1,t2

i,j = 1 − (1 − γ)t1+t2−|t1−t2|,
ct1,t2

i,j = t1t2 + t2
γ ((1 − γ)t1 − 1) + t1

γ ((1 − γ)t2 − 1) − (1−γ)t1 −(1−γ)t2

γ × 1−(1−γ)t2

γ and
gt1,t2

i,j = t2((1 − γ)t1 − 1) + t1((1 − γ)t2 − 1) − 1−(1−γ)t2

γ ((1 − γ)t1 + (1 − γ)t2) − (1−γ)t1+t2−|t1−t2|−(1−γ)t1+t2

γ

Model with observation error
If there is an observation error, the model (eq.A54) becomes :

Yi,t = lnÑi,t − lnÑi,0

= lnNi,t − lnNi,0 + vi,t − vi,0

= rt + ηit + ϵi,t − ϵi,0 + vi,t − vi,0

= −(r + 0.5σ2

γ
+ c) + rt + (1 − γ)t(c + r + 0.5σ2

γ
) + E′′

i,t

(A59)
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where E′′
i,t = E′

i,t + vi,t − vi,0 is a normally distributed multivariate variable with unknown variance-
covariance matrix and Mean(E′′

i,t) = 0.
Let derive variance and covariance of E′′

i,t.

Variance
V ar(E′′

i,t) = V ar(E′
i,t) + V ar(vi,t) + V ar(vi,0) − 2Cov(vi,t, vi,0)

Referring to eq.A43, we obtain
V ar(E′′

i,t) = V ar(E′
i,t) + 2σ2

obsIt>0 (A60)

In the stationary regime, we obtain V ar(E′′
i,t) = 1

1−(1−γ)2 (σ2 + σ2
trend(1 + 2−2γ

γ ))(2 − 2(1 − γ)t) + t2σ2
trend +

2σ2
obsIt>0.

Covariance

Cov(E′′
i,t, E′′

j,t−s) = Cov(E′
i,t + vi,t − vi,0, E′

j,t−s + vj,t−s − vj,0)
= Cov(E′

i,t, E′
j,t−s) + Cov(E′

i,t, vj,t−s) − Cov(E′
i,t, vj,0) + Cov(vi,t, E′

j,t−s) + Cov(vi,t, vj,t−s)
− Cov(vi,t, vj,0) − Cov(vi,0, E′

j,t−s) − Cov(vi,0, vj,t−s) + Cov(vi,0, vj,0)
(A61)

Case 1 : i ̸= j
If i ̸= j, we have :

Cov(E′′
i,t, E′′

j,t−s) = Cov(E′
i,t, E′

j,t−s)

because Cov(vi,t, vj,s) = 0 and Cov(E′
i,t, vj,t) = 0

In the stationary regime, we obtain
Cov(E′′

i,t, E′′
j,t−s) = (1−γ)|s|ρdi,j σ2

1−(1−γ)2 + 1
1−(1−γ)2 (ρdi,j σ2 + σ2

trend(1 + 2−2γ
γ ))(1 − (1 − γ)t − (1 − γ)t−s)

Case 2 : i = j
If i = j, we have :

Cov(E′′
i,t, E′′

i,t−s) = Cov(E′
i,t, E′

i,t−s) + Cov(E′
i,t, vi,t−s) − Cov(E′

i,t, vi,0) + Cov(vi,t, E′
i,t−s) + Cov(vi,t, vi,t−s)

− Cov(vi,t, vi,0) − Cov(vi,0, E′
i,t−s) − Cov(vi,0, vi,t−s) + σ2

obs

• If s ̸= 0
We have :

Cov(E′′
i,t, E′′

i,t−s) = Cov(E′
i,t, E′

i,t−s) − Cov(vi,t, vi,0) − Cov(vi,0, vi,t−s) + σ2
obs

because Cov(E′
i,t, vi,t−s) = 0 and Cov(vi,t, vi,t−s) = 0. Moreover, Cov(vi,t, vi,0) = σ2

obsIt=0 and
Cov(vi,0, vi,t−s) = σ2

obsIt=s.
So,

Cov(E′′
i,t, E′′

i,t−s) = Cov(E′
i,t, E′

i,t−s) + σ2
obs(1 − It=0 − It=s)

In the stationary regime,

Cov(E′′
i,t, E′′

j,t−s) = 1
1 − (1 − γ)2 ((1 − γ)|s|σ2 + σ2

trend(1 + 2 − 2γ

γ
) + t(t − s)σ2

trend + σ2
obs(1 − It=0 − It=s)

+ 1
1 − (1 − γ)2 (σ2 + σ2

trend(1 + 2 − 2γ

γ
))(1 − (1 − γ)t − (1 − γ)t−s)

• If s = 0
We have :

Cov(E′′
i,t, E′′

i,t) = V ar(E′′
i,t)
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Denoting ∆ the variance-covariance matrix of the residuals E′′
i,t, we have

Stationary form

∆ = σ2

1 − (1 − γ)2

[
P1,1 P1,2 ... P1,S

P2,1 P2,2 ... P2,S
... ... ... ...

PS,1 PS,2 ... PS,S

]
+ σ2

trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[ J 0 ... 0

0 J ... 0
... ... ... ...
0 0 ... J

]
+ σ2

trend

[
C1,1 0 ... 0

0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]

+ σ2

1 − (1 − γ)2

[
Q1,1 Q1,2 ... Q1,S

Q2,1 Q2,2 ... Q2,S
... ... ... ...

QS,1 QS,2 ... QS,S

]
+ σ2

trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

L1,1 L1,2 ... L1,S

L2,1 L2,2 ... L2,S
... ... ... ...

LS,1 LS,2 ... LS,S

]
+ σ2

obs

[ K 0 ... 0
0 K ... 0
... ... ... ...
0 0 ... K

]
(A62)

with

Pi,j =


ρdi,j σ2 (1 − γ)βρdi,j σ2 . . . (1 − γ)β(T −1)ρdi,j σ2

(1 − γ)βρdi,j σ2 ρdi,j σ2 . . . . . .
. . . . . . . . . . . .

(1 − γ)β(T −1)ρdi,j σ2 . . . . . . ρdi,j σ2



J =


1 1 . . . 1
1 1 . . . . . .

. . . . . . . . . . . .
1 . . . . . . 1



Ci,j =


c0,0

i,j c0,β
i,j . . . c

0,β(T −1)
i,j

cβ,0
i,j cβ,β

i,j . . . . . .

. . . . . . . . . . . .

c
β(T −1),0
i,j . . . . . . c

β(T −1),β(T −1)
i,j



Qi,j =


χ0,0

i,j χ0,β
i,j . . . χ

0,β(T −1)
i,j

χβ,0
i,j χβ,β

i,j . . . . . .

. . . . . . . . . . . .

χ
β(T −1),0
i,j . . . . . . χ

(β(T −1),β(T −1)
i,j



Li,j =


l0,0
i,j l0,β

i,j . . . l
0,β(T −1)
i,j

lβ,0
i,j lβ,β

i,j . . . . . .

. . . . . . . . . . . .

l
β(T −1),0
i,j . . . . . . l

β(T −1),β(T −1)
i,j


and

K =


0 0 . . . 0
0 2 1 1

. . . 1 2 . . .
0 1 . . . 2


where ct1,t2

i,j = t1t2, χt1,t2
i,j = ρdi,j (1 − (1 − γ)t1 − (1 − γ)t2) and lt1,t2

i,j = 1 − (1 − γ)t1 − (1 − γ)t2

Non stationary form

∆ = σ2

1 − (1 − γ)2

[
P1,1 P1,2 ... P1,S

P2,1 P2,2 ... P2,S
... ... ... ...

PS,1 PS,2 ... PS,S

]
+ σ2

0σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

Q1,1 Q1,2 ... Q1,S

Q2,1 Q2,2 ... Q2,S
... ... ... ...

QS,1 QS,2 ... QS,S

]
+ σ2

trend

[
C1,1 0 ... 0

0 C2,2 ... 0
... ... ... ...
0 0 ... CS,S

]

+ σ2
trend

1 − (1 − γ)2 (1 + 2 − 2γ

γ
)
[

L1,1 0 ... 0
0 L2,2 ... 0
... ... ... ...
0 0 ... LS,S

]
+

θσ0σtrend

√
σ2 + σ2

trend(1 + 2−2γ
γ )√

1 − (1 − γ)2

[
G1,1 0 ... 0

0 G2,2 ... 0
... ... ... ...
0 0 ... GS,S

]
+ σ2

obs

[ K 0 ... 0
0 K ... 0
... ... ... ...
0 0 ... K

]
(A63)

44



where

Pi,j =


ζ0,0

i,j ζ0,β
i,j . . . ζ

0,β(T −1)
i,j

ζβ,0
i,j ζβ,β

i,j . . . . . .

. . . . . . . . . . . .

ζ
β(T −1),0
i,j . . . . . . ζ

β(T −1),β(T −1)
i,j



Qi,j =


q0,0

i,j q0,β
i,j . . . q

0,β(T −1)
i,j

qβ,0
i,j qβ,β

i,j . . . . . .

. . . . . . . . . . . .

q
β(T −1),0
i,j . . . . . . q

β(T −1),β(T −1)
i,j



Ci,j =


c0,0

i,j c0,β
i,j . . . c

0,β(T −1)
i,j

cβ,0
i,j cβ,β

i,j . . . . . .

. . . . . . . . . . . .

c
β(T −1),0
i,j . . . . . . c

β(T −1),β(T −1)
i,j



Li,j =


l0,0
i,j l0,β

i,j . . . l
0,β(T −1)
i,j

lβ,0
i,j lβ,β

i,j . . . . . .

. . . . . . . . . . . .

l
β(T −1),0
i,j . . . . . . l

β(T −1),β(T −1)
i,j



Gi,j =


g0,0

i,j g0,β
i,j . . . g

0,β(T −1)
i,j

gβ,0
i,j gβ,β

i,j . . . . . .

. . . . . . . . . . . .

g
β(T −1),0
i,j . . . . . . g

β(T −1),β(T −1)
i,j


and

K =


0 0 . . . 0
0 2 1 1

. . . 1 2 . . .
0 1 . . . 2


with ζt1,t2

i,j = ρdi,j (σ2
0((1 − γ)t1+t2 + 1 − (1 − γ)t1 − (1 − γ)t2) + (1 − γ)|t1−t2| − (1 − γ)t1+t2),

qt1,t2
i,j = (1 − γ)t1+t2 + 1 − (1 − γ)t1 − (1 − γ)t2 , lt1,t2

i,j = 1 − (1 − γ)t1+t2−|t1−t2|,
ct1,t2

i,j = t1t2 + t2
γ ((1 − γ)t1 − 1) + t1

γ ((1 − γ)t2 − 1) − (1−γ)t1 −(1−γ)t2

γ × 1−(1−γ)t2

γ and
gt1,t2

i,j = t2((1 − γ)t1 − 1) + t1((1 − γ)t2 − 1) − 1−(1−γ)t2

γ ((1 − γ)t1 + (1 − γ)t2) − (1−γ)t1+t2−|t1−t2|−(1−γ)t1+t2

γ

Conditional appraoch
Here the term ηit will be deterministic and then it will be contained into the mean of the model not into the
residuals. The regression model (eq.A47) becomes :

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + (1 − γ)t(c + r + 0.5σ2

γ
) + ηit + ϵ′

i,t (A64)

The residuals is ϵ′
i,t. In the stationary regime, we obtain

lnNi,t = µ + ωxi − r + 0.5σ2

γ
+ rt + ηit + ϵ′

i,t

Now we can derive mean and variance-correlation structure of the residuals, ϵ′
i,t, for this model. Since

Mean(ϵ′
i,t) = 0, V ar(ϵ′

i,t) = V ar(ϵi,t) and Cov(ϵ′
i,t, ϵ′

j,t−s) = Cov(ϵi,t, ϵj,t−s), then the variance- covariance
matrix of the residuals ϵ′

i,t is the matrix Π of the DFLE (see eq.A16 and A17).
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Model with observation error
Like in marginal model, one may want to introduce an additional observation error term in this statistical
model by adding the diagonal error matrix below called z to Π.

z = σ2
obs

1 − (1 − γ)2


IT 0 . . . 0
0 IT . . . 0

. . . . . . . . . . . .
0 0 . . . IT



Introduction of strata

Let suppose that the population is divided into g strata with different trend parameters. That means that
each sub-population i of each strata has a different deterministic trend ri, and that these trends are normally
and independently distributed with mean rg and variance σ2

trend,g. In this case, the deviations from local
equilibrium (DFLE) becomes

ϵi,t = (1 − γ)ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2 (A65)

where ηi is an independent and normally distributed random variable with mean 0 and variance σ2
trend,g(i).

Mean of DFLE

Based on eq.A11, we obtain

Mean(ϵi,t) = (1 − γ)tMean(ϵi,0) − (rg(i) + 0.5σ2)1 − (1 − γ)t

γ
(A66)

If 0<γ<1, the sequence Mean(ϵi,t) converges to −(rg(i)+0.5σ2)
γ when t increases to infinity.

Variance

V ar(ϵi,t) = V ar((1 − γ)ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2)
= (1 − γ)2V ar(ϵi,t−1) + σ2 + σ2

trend,g(i) − 2(1 − γ)Cov(ϵi,t−1, ηi)

because ui,t and ηi are independent. Referring to eq.A13, we have

V ar(ϵi,t) = (1−γ)2tV ar(ϵi,0)+(σ2+σ2
trend,g(i)(1+2 − 2γ

γ
))1 − (1 − γ)2t

1 − (1 − γ)2 −2(1−γ)t(Cov(ϵi,0, ηi)+
σ2

trend,g(i)

γ
)1 − (1 − γ)t

γ
)

(A67)
Asymptotically in t, we obtain V ar(ϵi,t) = 1

1−(1−γ)2 (σ2 + σ2
trend,g(i)(1 + 2−2γ

γ )) because (1 − γ)t → 0.

Covariance
We have

Cov(ϵi,t, ϵj,t−s) = Cov((1 − γ)ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2, (1 − γ)ϵj,t−s−1 + uj,t−s − rg(j) − ηj − 0.5σ2)
= (1 − γ)2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γ)Cov(ϵi,t−1, uj,t−s) − (1 − γ)Cov(ϵi,t−1, ηj)
+ (1 − γ)Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s) − (1 − γ)Cov(ηi, ϵj,t−s−1) + Cov(ηi, ηj)
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Based on eq.A15, asymptotically in t, with fixed s, we have :

Cov(ϵi,t, ϵj,t−s) = 1
1 − (1 − γ)2 ((1 − γ)|s|ρdi,j σ2 + σ2

trend,g(i)(1 + 2 − 2γ

γ
) × δi,j)

Whereas the non-asymptotic expression of covariance (see eq.A21) is :

Cov(ϵi,t, ϵj,t−s) =


(1 − γ)2t−sCov(ϵi,0, ϵj,0) + (1 − γ)|s|ρdi,j σ2 1−(1−γ)2(t−s)

1−(1−γ)2 if i ̸= j

(1 − γ)2min(t,t−s)V ar(ϵi,0) − (1 − γ)2min(t,t−s)Cov(ϵi,0, ηi) 1−(1−γ)|s|

γ + A1
1−(1−γ)2min(t,t−s)

1−(1−γ)2

−A2(1 − γ)t 1−(1−γ)min(t,t−s)

γ if i = j

(A68)
where A1 = (1 − γ)|s|σ2 + σ2

trend,g(i)(1 + 2−2γ
γ ) and A2 = (Cov(ϵi,0, ηi) + σ2

trend,g(i)
γ )(1 + (1 − γ)−s)
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Variation of density-dependance

Let suppose that in each strata the density-dependance is different than the other. That means that each sub-
population i of each strata is submitted to a different density-dependence, with γg, the strength (intensity)
of that dependence in the strata. ρ and σ are assumed to be constant from one strata to another. In this
case, the DFLE (eq.A65) becomes :

ϵi,t = (1 − γg(i))ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2 (A69)

Mean of DFLE
Based on eq.A66, we have

Mean(ϵi,t) = (1 − γg(i))tMean(ϵi,0) − (rg(i) + 0.5σ2)
1 − (1 − γg(i))t

γg(i)
(A70)

If 0<γg(i)<1, the sequence Mean(ϵi,t) converges to −(rg(i)+0.5σ2)
γg(i)

when t increases to infinity.

Variance
From eq.A67, we have

V ar(ϵi,t) = (1 − γg(i))2tV ar(ϵi,0) + (σ2 + σ2
trend,g(i)(1 +

2 − 2γg(i)

γg(i)
))

1 − (1 − γg(i))2t

1 − (1 − γg(i))2

− 2(1 − γg(i))t(Cov(ϵi,0, ηi) +
σ2

trend,g(i)

γg(i)
)
1 − (1 − γg(i))t

γg(i)
)

(A71)

Asymptotically in t, we obtain V ar(ϵi,t) = 1
1−(1−γg(i))2 (σ2 +σ2

trend,g(i)(1+ 2−2γg(i)
γg(i)

)) because (1−γg(i))t → 0.

Covariance
We have

Cov(ϵi,t, ϵj,t−s) = Cov((1 − γg(i))ϵi,t−1 + ui,t − rg(i) − ηi − 0.5σ2, (1 − γg(j))ϵj,t−s−1 + uj,t−s − rg(j) − ηj − 0.5σ2)
= (1 − γg(i))(1 − γg(j))Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γg(i))Cov(ϵi,t−1, uj,t−s) − (1 − γg(i))Cov(ϵi,t−1, ηj)
+ (1 − γg(j))Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s) − (1 − γg(j))Cov(ηi, ϵj,t−s−1) + Cov(ηi, ηj)

(A72)

If i and j are in the same strata, Cov(ϵi,t−1, ui,t−s) = (1 − γg(i))s−1ρdi,j σ2. If not, Cov(ϵi,t−1, ui,t−s) = 0.

Case 1 : i = j
i = j means that we are in the same strata and γg(i) = γg(j). Then, we have:

Cov(ϵi,t, ϵj,t−s) = (1 − γg(i))2Cov(ϵi,t−1, ϵi,t−s−1) + (1 − γg(i))Cov(ϵi,t−1, ui,t−s) − (1 − γg(i))Cov(ϵi,t−1, ηi)
+ (1 − γg(i))Cov(ui,t, ϵi,t−s−1) + Cov(ui,t, ui,t−s) − (1 − γg(i))Cov(ηi, ϵi,t−s−1) + σ2

trend,g(i)

Since Cov(ϵi,t−1, ηi) = (1 − γg(i))t−1Cov(ϵi,0, ηi) − σ2
trend,g(i)

1−(1−γg(i))t−1

γg(i)
based on eq.A12, then, we obtain

from eq.A17 :

Cov(ϵi,t, ϵj,t−s) = (1 − γg(i))2min(t,t−s)V ar(ϵi,0) − (1 − γg(i))2min(t,t−s)Cov(ϵi,0, ηi)
1 − (1 − γg(i))|s|

γg(i)

+ A1
1 − (1 − γg(i))2min(t,t−s)

1 − (1 − γg(i))2 − A2(1 − γg(i))t 1 − (1 − γg(i))min(t,t−s)

γg(i)

with A1 = (1 − γg(i))|s|σ2 + σ2
trend,g(i)(1 + 2−2γg(i)

γg(i)
) and A2 = (Cov(ϵi,0, ηi) + σ2

trend,g(i)
γg(i)

)(1 + (1 − γg(i))−s)
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Asymptotically in t, we have : Cov(ϵi,t, ϵj,t−s) → 1
1−(1−γg(i))2 ((1 − γg(i))|s|σ2 + σ2

trend(1 + 2−2γg(i)
γg(i)

))

Case 2 : i ̸= j
If i ̸= j, Cov(ηi, ηj) = 0, Cov(ϵi,t−1, ηj) = 0 and Cov(ηi, ϵj,t−s−1) = 0. Then,

Cov(ϵi,t, ϵj,t−s) = 1 − γg(i))(1 − γg(j))Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γg(i))Cov(ϵi,t−1, uj,t−s)
+ (1 − γg(j))Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s)

Here, we have two sub-cases.

• i and j are in the same stratum
In this case, we have γg(i) = γg(j). And then,

Cov(ϵi,t, ϵj,t−s) = (1 − γg(i))2Cov(ϵi,t−1, ϵj,t−s−1) + (1 − γg(i))Cov(ϵi,t−1, uj,t−s)
+ (1 − γg(i))Cov(ui,t, ϵj,t−s−1) + Cov(ui,t, uj,t−s)

Based on the previous results, we have

Cov(ϵi,t, ϵj,t−s) = (1 − γg(i))2t−sCov(ϵi,0, ϵj,0) + (1 − γg(i))|s|ρdi,j σ2 1 − (1 − γg(i))2min(t,t−s)

1 − (1 − γg(i))2

Asymptotically in t, we have Cov(ϵi,t, ϵj,t−s) → (1−γg(i))|s|ρdi,j σ2

1−(1−γg(i))2

• i and j are in the different strata

Here, we have : Cov(ui,t, ϵj,t−s−1) = 0 and Cov(ui,t, uj,t−s) =
{

0 if s ̸= 0
ρdi,j σ2 if s = 0

So, as we proved above, we have :

Cov(ϵi,t, ϵj,t−s) = (1−γg(i))t(1−γg(j))t−sCov(ϵi,0, ϵj,0)+(1−γg(i))|s|ρdi,j σ2 1 − (1 − γg(i))min(t,t−s)(1 − γg(j))min(t,t−s)

1 − (1 − γg(i))(1 − γg(j)
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7.2. Appendix B : Calculus of simulation

Giving the following parameters :

• B total number of observations

• T the average number of visits per site

• tmax maximum monitoring time

• T the average number of visits per site

• p the proportion of non-permanents sites

• S Total number of sites

• Sp Total number of permanents sites

• Snp Total number of non-permanents sites

• Tp number of visits per permanents sites

• Tnp number of visits per non-permanents sites

Questions
The two main questions are :

• How many sites S do we need to visit in general ?

• How many time Tp do we need to visit permanents sites ?

Expression of Tp as a function of p and T
Let define Sp as a total number of permanents sites and Snp a total number of non-permanents sites.
We have :

T = Sp

S
× Tp + Snp

S
× 1

or

T = (1 − p)Tp + p

Since that we can express Tp as function of T :

Tp = T − p

1 − p

Expression of S
By definition we have B = ST :

S = B

T

Then we can deduce Sp and Snp :
Sp = B

T
(1 − p)

Snp = B

T
p
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7.3. Appendix C : Steps of simulations

• Step 1 : Definition of monitoring scenario

• Step 2 : Choice of a monitoring strategy for the temporal distribution of visits

• Step 3 : Implementation of the variance-covariance matrix of residuals Φ under stationary assumption

• Step 4 : Calculus of V ar(r̂) (variation of the estimator of log-linear temporal trend) and standard
error se(r̂) knowing Φ for each scenario

• Step 5 : Reproduction of the plots
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