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Abstract
1.	 Reconstructing past ecological population dynamics and demographic events is 

crucial for understanding the dynamics of ecological processes, evaluating the 
impact of environmental changes and making informed conservation decisions. In 
forest ecosystems, retrodiction (i.e. the backward projection of ecological popu-
lations) plays a pivotal role in understanding historical forest carbon levels and 
the factors that have influenced their variation over time, because forest demog-
raphy is a major determinant of the amount of carbon stored in forest ecosys-
tems. The persistent lack of quantitative methods has been a significant obstacle 
in retrodicting forest demography, especially in applications of a broad geographi-
cal scale. While there is a wealth of models for predicting future forest conditions, 
models that can project these conditions backward in time are scarce.

2.	 This study presents reverse matrix model (RMM), an innovative retrodiction mod-
elling approach grounded in the principles of transition matrix models. RMM is 
designed to deduce past demographic characteristics of ecological populations 
using current data, making it one of the first models capable of projecting the 
fine-scale dynamics of forest demography into the past.

3.	 We assessed the retrodictive performance of RMM by fitting it to a dataset of a 
disturbed tropical rainforest in French Guiana in 2001–2023, then comparing the 
retrodictions to observations back to 1983 when the disturbance occurred. We 
further empirically evaluated the viability of retrodiction over a defined duration 
by inverting the density-dependent matrix model by Lin et al. (1996), which pre-
dicts the dynamics of northern hardwoods in the United States.

4.	 The case studies demonstrate significant potential for RMM application in vari-
ous domains of forestry and conservation, including ecosystem management 
and conservation planning, global change impact assessment and biodiversity 
monitoring.
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2  |    PICARD et al.

1  |  INTRODUC TION

The backward projection of ecological populations, sometimes 
also referred to as retrodiction or backcasting, is the process of re-
constructing past population dynamics and demographic events. 
Retrodiction is crucial for understanding the dynamics of ecolog-
ical processes, evaluating the impact of environmental changes 
and making informed conservation decisions. Early applications 
of retrodiction were primarily in the field of population genetics. 
Kingman (1982) introduced the coalescent process, which utilizes the 
genealogical relationships among individuals to infer past population 
dynamics. Hudson  (1990) and others (Gill et  al.,  2016) extended 
these ideas, applying the coalescent theory to infer past population 
sizes, migration rates and other demographic parameters.

In forest demography, which quantifies the structure and dynamics 
of tree populations within forest ecosystems, retrodiction can be used 
to infer historical forest conditions, such as the distribution of forest tree 
population by species and size. To this end, forest growth models, typ-
ically used to predict future forest conditions (Pretzsch, 2009), can be 
adapted to project forest conditions backward in time based on current 
forest conditions and historical data such as land use, fire history, or cli-
mate records (Bonnicksen & Stone, 1982). In climate change research, 
forest growth models can be used to understand how forests have re-
sponded to past climate variability and change (Barth et  al.,  2015). In 
forest conservation and restoration, backward projections can provide 
baseline or reference conditions to help restore ecosystems to their 
historical conditions, or understand how far current conditions have de-
viated from the natural state (Manning et al., 2006). These applications 
demonstrate the versatility of forest growth models not only in forecast-
ing future scenarios but also in providing insights into the past, which is 
essential for informed forest management and conservation planning.

Forest demography is a major determinant of the amount of 
carbon stored in forest ecosystems (McDowell et al., 2020). Due to 
inconsistent data, methods and assumptions employed in existing 
forest carbon monitoring systems (Harris et  al.,  2021), large un-
certainties in the magnitude and direction of the response of the 
terrestrial carbon cycle to climate change still remain unquantified 
(Pugh et al., 2020). Consequently, retrodiction plays a pivotal role in 
our comprehension of historical forest carbon levels and the factors 
that have influenced their variation over time. Understanding these 
dynamics is essential for reconstructing historical carbon storage 
benchmarks (Gasser et al., 2020; Magerl et al., 2019), which can in-
form predictive models and help in planning conservation and man-
agement strategies to mitigate climate change impacts.

Transition matrix models are widely used in many disciplines 
(Leslie, 1945; Lewis, 1942; Salguero-Gómez et al., 2015), especially 
in forestry where they have been employed to study the dynamics of 
almost all the forest types around the world (Liang & Picard, 2013). 
In the typology of forest growth models, matrix models stand be-
tween stand-level models and individual tree models (Porté & 
Bartelink,  2002). Stand-level models are useful for monospecific 
even-aged stands, but become inappropriate for mixed or uneven-
aged stands because they do not consider within-stand variability 

in individual size or species. In comparison, individual-based models 
predict the temporal changes of each individual tree on a stand, but 
due to their computing intensive nature, they have limited applica-
tions in large-scale studies. Matrix models provide a good compro-
mise between computing requirements over large scale and capacity 
to deal with individual variability.

Matrix models have been applied to study almost all the aspects 
of forestry (Ohse et al., 2023). In forest ecology, matrix models have 
been used to study the demography of natural succession (e.g. Alvarez-
Buylla, 1994) and the impacts of climate changes (Liang et al., 2011), 
and natural disturbances (Price & Bowman, 1994). In forest manage-
ment, matrix models have been applied to evaluate forest carbon 
sequestration and biomass potential (Ingram, 2012; Liang, 2012), eco-
nomic outcomes (Ingram & Buongiorno, 1996) and ecological impacts 
(Ma et al., 2016, 2020) of various management regimes, including the 
impact on the habitat of endangered wildlife species (Zhou et al., 2008).

The persistent lack of quantitative methods has been a signif-
icant obstacle in retrodicting forest demography, especially in ap-
plications of a broad geographical scale. While there is a wealth of 
models for predicting future forest conditions, models that can proj-
ect these conditions backward in time are scarce. The mathematical 
methods that underpin matrix modelling pave the way for retrodict-
ing matrix models. Matrix models are related to several mathemati-
cal fields, such as discrete-time finite-space Markov chains (Bruner 
& Moser, 1973; Caswell, 2001, Chap. 5) and partial differential equa-
tions (Caswell, 2001, Chap. 8; Takada & Hara, 1994). The retrodic-
tion of Markov chains (Surace & Scandi, 2023) and the time-reversal 
of partial differential equations thus provide hints for retrodicting 
matrix models. However, matrix models do not entirely fall within 
the scope of these mathematical fields, so that none of them com-
pletely defines how to retrodict matrix models.

This study presents reverse matrix model (RMM), a retrodiction 
modelling approach grounded in the principles of transition matrix mod-
els. RMM is designed to deduce past demographic characteristics of eco-
logical populations using current data, marking it one of the first models 
capable of projecting the fine-scale dynamics of forest demography into 
the past. Two related questions were addressed: (i) How can a RMM be 
fitted to data? (ii) Given a forward matrix model fitted to data, how can 
it be inverted using RMM or another inversion method? For question 
(i), we hypothesize that RMM has a retrodictive capacity similar to the 
predictive capacity of matrix models, as they are grounded in the same 
theoretical framework. For question (ii), we hypothesize that, because 
some information is lost in the forward direction, inversion is possible 
only within a bounded time frame. We assessed the retrodictive perfor-
mance of RMM by fitting it to a dataset of a disturbed tropical rainforest 
in French Guiana in 2001–2023, then comparing the retrodictions to ob-
servations back to 1983 when the disturbance occurred. In addition to 
RMM, we also devised explicit methods to invert a matrix model from 
a forward to a backward recurrence relationship. We empirically evalu-
ated the duration of time during which the backward dynamics followed 
the same trajectory as the forward dynamics by inverting the density-
dependent matrix model by Lin et al. (1996), which predicts the dynamics 
of northern hardwoods in the United States.
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    |  3PICARD et al.

2  |  MATERIAL S AND METHODS

2.1  |  Matrix model

In a matrix model of forest dynamics, a population is represented by 
a vector N giving the abundance of individuals in K diameter classes 
at a given time t. Time is discrete. The dynamics is determined by the 
matrix recurrence relationship O = GN + R, where O is the vector of 
tree abundances at the subsequent time t + 1, G is a K × K growth 
transition matrix, and R is a vector of length K whose first element 
gives the number of recruited individuals between times t and t + 1 
and all other elements are null. By iterating the forward recurrence 
relationship that computes O from N, future dynamics can be pre-
dicted. Between times t and t + 1, an individual may either move up 
from its diameter class to the next one, stay alive in its diameter 
class, or die. Hence, the growth transition matrix is written:

where qi is the stasis rate in class i  and pi is the upgrowth rate from class 
i  to i + 1. The mortality rate in class i  is obtained as mi = 1 − pi − qi.

A particular case is when the first element of R is a linear function 
of N, that is written as tfN where superscript t denotes the transpose 
and f =

(
f1, … , fK

)
 is a vector of K fecundities. Most of the time, 

newly recruited trees cannot be related to their parent trees, so 
that the average fecundity f =

(
t1KR

)
∕
(
t1KN

)
 is the only estimable 

quantity. Then, the matrix relationship becomes: O = UN, where U is 
a Usher (1966, 1969) transition matrix:

A matrix model predicts the transitions and per capita asex-
ual or sexual contributions between the states of a life cycle 

(Caswell, 2001). In forest dynamics, the states of the life cycle are 
diameter classes, and transitions are stasis, upgrowth and mortality 
(Figure  1). The trajectory of an individual along the life cycle can 
be described by a Markov chain. Given a dataset giving the state of 
every tree at time t and t + 1, the matrix model is calibrated by count-
ing, for each diameter class i , the number Mi of trees that die, the 
number Qi of trees that stay alive in diameter class i , and the num-
ber Pi of trees that move up from diameter class i  to i + 1 (Figure 2). 
Transition rates are computed with respect to the number of living 
trees in each diameter class (i.e. excluding the number of dead trees). 
Thus, the forward transitions rates are: for class i = 1, … ,K − 1, 
mi = Mi ∕Ni, qi = Qi ∕Ni and pi = Pi ∕Ni, where Ni = Mi + Qi + Pi is the 
number of living trees in diameter class i  at time t; for the last class, 
mK = MK ∕NK and qK = QK ∕NK, where NK = MK + QK is the number of 
living trees in diameter class K at time t.

Matrix models with fixed transition rates may not be sufficiently 
flexible to account for population dynamics (Caswell, 2001, Chap. 
16; Roberts & Hruska, 1986). Transition matrix may actually vary be-
tween populations depending on their density. Density-dependent 
models where the transition rates are functions of N provide more 
realistic predictions when density-dependent processes such as 
competition affect vital rates (Favrichon,  1998; Lin et  al.,  1996). 
Density-dependent models are often fitted using a two-step process 
(Solomon et al., 1986). First, the transition rates for different popula-
tions at varying densities are estimated as described above. Second, 
these transition rates are regressed against population density.

2.2  |  Reverse matrix model

A backward matrix model can be defined by reversing the direc-
tion of the transitions between the states of the life cycle (i.e. by 
reversing the direction of the arrows in Figure 1). Because the life 
cycle description of matrix models complies with a Markov chain, 
the retrodiction of Markov chains offers a prima facie way to de-
velop RMMs. Let i  and j be two states of the life cycle that are 
connected by an arrow, and let Xt be the state of an individual at 
time t . By definition, the transition rate from i  to j in the matrix 
model is the probability Pr

(
Xt+1 = j|Xt = i

)
. Retrodicting the matrix 

model consists in computing the backward transition rate from j 
to i , that is the probability Pr

(
Xt = i|Xt+1 = j

)
. The retrodiction of 

(1)G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1 0

p1 q2

⋱ ⋱

0 pK−1 qK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1+ f f … f

p1 q2 0

⋱ ⋱

0 pK−1 qK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F I G U R E  1  Life cycle for a matrix growth model of forest dynamics. Circles represent the diameter classes. Arrows represent the possible 
transitions between two consecutive time steps. Between time t and t + 1, a tree in diameter class i  dies with probability mi, stays alive in 
class i  with probability qi or moves up from class i  to i + 1 with probability pi.
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4  |    PICARD et al.

Markov chains is commonly done using Bayes' formula (Surace & 
Scandi, 2023):

These calculations are continued in Appendix A. However, this 
approach has an inherent limitation in defining RMM because the 
number of past dead individuals in a population is unknown. To com-
pute the number of dead individuals in matrix models, it is enough 
to know the number of living individuals in each state. However, 
to compute the backward transitions from death, the cumulative 
number of dead individuals must be known. In other words, we can 
define stasis and reverse growth as backward transitions, but we 
cannot define reverse mortality as a backward transition by solely 
monitoring living individuals.

Nonetheless, RMM can be defined in a way similar to matrix 
models by counting the individuals that experience backward transi-
tions and expressing these numbers in relative terms to the number 
of living individuals in each state. For backward transitions, the num-
ber of living trees in diameter class i  at time t + 1 is: Oi = Qi + Pi−1 for 
each class i = 2, … ,K (Figure 2). The stasis rate, that is the rate of 
trees that were already in class i  at time t, is: ri =

(
Mi + Qi

)
∕Oi. The 

reverse growth rate, that is the rate of trees in diameter class i  at 
time t + 1 that were issued from diameter class i − 1, is: bi = Pi−1 ∕Oi . 
Contrary to the forward transition rates that sum to one, the sum 
of backward transition rates is greater than one: ri + bi = 1 +Mi ∕Oi . 
The quantity ri + bi − 1 now represents the mortality rate in class i  . 
The first diameter class is a bit different from the others because 
it does not have any reverse growth rate but includes the newly 
recruited trees. These recruited trees have to be removed to com-
pute the stasis rate, which is r1 =

(
M1 + Q1

)
∕
(
O1 − R

)
= 1 +M1 ∕Q1 , 

where O1 = Q1 + R is the number of living trees in diameter class 1 
at time t + 1.

The backward matrix relationship thus is N = C(O − R), where the 
reverse growth transition matrix C is

As in matrix models, recruitment in RMM can also be expressed pro-
portionally to O rather than in an additive form. The backward matrix 
relationship then is N = VO, where the reverse transition matrix V is

and h is the average fecundity rate of the reverse matrix model. Given 
the counts of individuals in diameter classes, the expression of h is 
h =

(
1 +M1 ∕Q1

)
R∕

(
O1 + … + OK

)
.

Given a dataset with the observed diameters of trees at time t 
and t + 1, including the diameter of trees that were alive at time t but 
dead at t + 1 and the diameter of trees that were recruited between 
t and t + 1, the expressions of ri, bi and h allow us to fit RMM to ob-
servations. The fitted backward recurrence relationship can then be 
iterated to retrodict past dynamics.

2.3  |  Inversion of the recurrence relationship

When a forward matrix model is already fitted but the goal is to 
retrodict past dynamics rather than predict future dynamics, the 
question is to invert the recurrence relation of the forward model. 
We considered four methods to invert the forward recurrence rela-
tion. One was based on RMM and provided interpretability of the 

Pr
�
Xt = i�Xt+1 = j

�
=

Pr
�
Xt+1 = j�Xt = i

�
Pr

�
Xt = i

�
∑

kPr
�
Xt+1 = j�Xt = k

�
Pr

�
Xt = k

�
(2)C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1 b2 0

r2 ⋱

⋱ bK

0 rK

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1−h b2−h −h … −h

r2 b3 0

⋱ ⋱

⋱ bK

0 rK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F I G U R E  2  Given a dataset with the observed status (alive or dead) and diameter of N trees at times t and t + 1, representation of the 
count of trees in each diameter class at each time step according to their status. Diameter classes are represented by coloured boxes: orange 
= diameter classes for the forward transitions; blue = diameter classes for the backward transitions. For each diameter class, i = 1, … ,K, the 
counts of tree are: Mi, counts of trees that die in diameter class i  between time t and t + 1; Qi, count of trees that stay alive in diameter class i
; Pi, count of trees that move up from diameter class i  to i + 1 . In the first class, R is the number of recruited trees between time t and t + 1.
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    |  5PICARD et al.

inversion process in terms of vital rates. The other three inversion 
methods aimed to solve for the input term of the recurrence without 
focusing on the biological interpretation of the inversion process: 
one was a numerical method without an explicit expression of the 
solution, while the other two were based on zero- and first-order 
approximations of the recurrence relation, allowing for an explicit 
expression of the solution to be computed. When the forward tran-
sition matrix has fixed coefficients, these three methods boil down 
to matrix inversion. Differences among the three methods arise in 
the more complicate case of density-dependent matrix models.

2.3.1  |  Numerical inversion

Given a vector of abundances O, a density-dependent matrix 
model can be numerically inverted to find the inverse image N of 
O. It consists in using a numerical algorithm to solve the optimiza-
tion problem minN ∥ O − G(N)N − R(N) ∥, where ∥ ⋅ ∥ is a norm of 
ℝ

K (e.g. the �2-norm). Numerical optimization methods require a 
starting point for N. Any of the solutions presented in the subse-
quent sections can be used as a starting point for the numerical 
optimization method.

2.3.2  |  Zero-order approximation

A zero-order approximation of the inverse image of the vector of 
abundances O was obtained by replacing N by O in the expressions 
of the transition matrix and recruitment vector. In other words, in-
stead of solving the non-linear equation O = G(N)N + R(N) for N, 
we solve the linear equation O = G(O)N + R(O). This approximation 
makes sense if N is close enough to O, typically if the time step of the 
matrix model is small enough (e.g. 1 year) so that small changes are 
observed between times t and t + 1. Because the determinant of G 
is ∣ G ∣ = q1q2 … qK > 0, matrix G is invertible. Therefore, the zero-
order approximation of the back-projected state is

If the first element of R is a linear function of N, the zero-order ap-
proximation is rather obtained by solving O = U(O)N, where U is a Usher 
transition matrix. Under mild conditions (see Supporting Information S2), 
we can show that an Usher matrix is invertible. The zero-order approxi-
mation of the back-projected state thus is N = U(O)

−1
O.

2.3.3  |  First-order approximation

A first-order approximation of the inverse image of the vector of 
abundance O was obtained by making a first-order Taylor expan-
sion at O of the application � that maps N onto G(N)N + R(N). The 
first-order expansion of � at O is (Magnus & Neudecker,  2007): 
�(O) + D�(O)(N − O), where D� is the Jacobian matrix of �, that is the 

K × K matrix whose ijth element is the partial derivative of the i th  
element of �(N) with respect to the jth element of N. Using this first-
order expansion, an approximate solution of O = �(N) thus is

Using the chain rule of matrix differentiation, 
D𝜙(N) =

(
tN ⊗ IK

)
J(N) + G(N) + D(N), where J is the Jacobian matrix of G,  

D is the Jacobian matrix of R, IK is the K × K identity matrix, and ⊗ de-
notes the Kronecker product (Magnus & Neudecker, 2007, p. 31).

We can readily check that Equation (5) generalizes Equation (4). 
Indeed, the Jacobian matrix of the application that maps N onto 
G(O)N + R(O) is G(O). Replacing D�(O) by G(O) in Equation (5) brings 
back Equation (4).

2.3.4  |  RMM as an inversion method

By replacing Mi, Qi and Pi by miNi, qiNi and piNi respectively in the ex-
pressions of ri and bi, one can express the backward transition rates 
as a function of the forward transition rates. It brings

where �i = Ni ∕Ni−1. The expression of bi given here is exactly the one ob-
tained by the retrodiction of Markov chains (see Equation 7 in Appendix 
A), whereas the expression of ri slightly differs from that obtained in this 
manner (see Appendix  A). Using these expressions, a reverse matrix 
model can straightforwardly be built from a given matrix model. In other 
words, RMM can also be seen as an inversion method. Even when their 
transition rates are related by Equation (6), the backward transition matrix 
C is not the inverse of the forward matrix G (Supporting Information S4). 
Nonetheless, GC and CG are close to the identity matrix.

2.4  |  Case studies

Two case studies illustrate RMM and the inversion of matrix models. 
First, we fit a reverse matrix model to a dataset from a tropical rain-
forest and compare the retrodicted dynamics to past observations. 
Second, we inverse a density-dependent matrix model and compare 
the capacity of the four inversion methods to match the predictions 
of the forward model.

2.4.1  |  RMM of a tropical rain forest

We used the data from the Paracou experimental site in French 
Guiana to fit a reverse matrix model (Gourlet-Fleury et  al.,  2004). 

(4)N = G(O)
−1

[
O − R(O)

]

(5)N = O + D�(O)
−1

[
O − G(O)O − R(O)

]

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

r1=
�
1−p1

�
∕q1

ri =
�
1−pi

�
∕
�
qi+pi−1∕�i

�
for i=2, … ,K−1

bi =pi−1∕
�
pi−1+qi�i

�
for i=2, … ,K

rK =1∕
�
qK +pK−1∕�K

�
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6  |    PICARD et al.

In 1984, twelve 6.25-ha permanent plots were set up at Paracou. 
Each plot was divided in four 1.5625-ha subplots, which are here the 
repetition units. All trees with diameter at breast height greater than 
10 cm were inventoried. The plots have been monitored since 1984, 
on an annual basis until 1995, then every 2 years. Diameters have 
been remeasured, and dead trees and newly recruited trees have 
been recorded at each survey. The 12 plots were distributed in three 
blocks. In each block, three silvicultural treatments of increasing in-
tensity, combining selective logging and additional thinning, were 
applied, each to one plot. The fourth plot in each block was left as 
control. Thus, for each treatment, there were twelve 1.5625-ha rep-
etitions. Treatments were applied between 1986 and 1988, then no 
intervention was made and natural dynamics occurred. Treatments 
removed on average 18.2% (treatment 1), 36.1% (treatment2) and 
43.9% (treatment 3) of the basal area of 1986 (Gourlet-Fleury 
et al., 2004, p. 256). In 2003, the forest on the treated plots was still 
recovering from the disturbance that had occurred 17 years earlier.

We fitted a RMM for each treatment separately. We used RMMs 
with fixed transition rates and recruitment proportional to O, that is with 
the transition matrix given by Equation (3). Following Favrichon (1998), 
we used 11 diameter classes ranging from 10 to 60 cm dbh with a con-
stant width of 5 cm, except the last class that gathered all trees greater 
than 60 cm dbh. Observations in 2001 and 2003 were used to fit the 
RMMs. Therefore, the time step of the RMMs was 2 years. Forest dy-
namics were then retrodicted till 1985.

2.4.2  |  Inversion of a density-dependent 
matrix model

We back-projected the density-dependent matrix model developed by 
Lin et al.  (1996) to study the forest tree demography and financial in-
come of the northern hardwoods in the United States. This model relies 
on K = 12 diameter classes. The time step is 1 year. There are three spe-
cies groups, denoted I to III. Upgrowth rates depend on the plot basal 
area: pgi = �gi + �gB, where pgi is the upgrowth rate for trees in species 
group g and diameter class i , B is the plot basal area, and �gi and �g are 
fixed coefficients. The plot basal area is computed as B =

∑III

g=I
tBNg, 

where B is the vector giving the average basal area of trees in each di-
ameter class and Ng is the vector of tree abundances per diameter class 
for species group g. Mortality rates mgi are density-independent. Stasis 
rates are computed as qgi = 1 − mgi − pgi (where, by convention, pgK = 0) 
and are thus also density-dependent. The recruitment vector for species 
group g is Rg =

[
Rg , 0, … , 0

]
, where the recruitment rate is also density-

dependent, Rg = �g0 + �g1B + �g2Ng, where Ng is the total abundance of 
species group g and the �gks are fixed coefficients. The total abundance 
of species group g is computed as Ng =

t1KNg, where 1K if the vector of 
length K full of ones. In total, the model has 30 parameters, including 9 
for recruitment, 12 for growth and 9 for mortality.

Starting from an empty plot, we projected the state of the for-
est using Lin et al.'s density-dependent matrix model over a time 
horizon of T, bringing a final vector N(T) of tree abundances in the 
three species groups. Starting from N(T), we then back-projected 

the state of the forest for the same period of time T. We used the 
four back-projection techniques described in the previous sec-
tions: numerical inversion, zero-order approximation, first-order 
approximation and RMM. For a given horizon T, let N(t) and O(t) be 
the vectors of tree abundances at time t = 1, … , T when moving 
forward and backward, respectively, with N(T) = O(T). We defined 
divergence between forward projection N(t) and backward projec-
tion O(t) as an absolute difference in basal area of any of the spe-
cies group greater than 0.1 m2 ha−1 and a relative difference in basal 
area of any of the species group greater than 5%. To assess diver-
gence, we also computed the root mean square error (RMSE) of 
the difference between N(t) and O(t). The distance to stable struc-
ture was defined as the RMSE of the difference between N(t) and 
limt→∞N(t). We defined divergence time tdiv as the maximum value 
of t  such that O(t) diverges from N(t). When moving backward, tdiv 
actually gives the year when divergence starts. We defined the 
duration of agreement between the forward and backward pro-
jections as � = T − tdiv. Finally, we defined the elasticity of the du-
ration of agreement to a model parameter � as the relative rate of 
change of the duration of agreement with respect to the relative 
rate of change of �, that is �ln� ∕�ln�.

3  |  RESULTS

3.1  |  Retrodicted dynamics at Paracou

The reverse growth rate increased from control plots to the plots 
under treatment 3, following the trend in perturbation intensity 
(Table 1, Supporting Information S5). So did the fecundity rate. The 
stasis rate showed the opposite trend. To summarize, the more in-
tense the treatment, the faster the reverse dynamics.

RMM extrapolated the dynamics observed in 2001–2003 to 
the past. For those plots that were not disturbed (control plots) 
or slightly disturbed in 1986–1988 (treatment 1), the dynamics 
were quite linear and the RMM retrodiction conformed to ob-
served dynamics (Figure  3a,b and Figure S1a,b in Supporting 
Information  S6). However, for more intense disturbance (treat-
ments 2 and 3), the post-disturbance plot dynamics showed 
non-linearity. The RMM with fixed transition rates was then 

TA B L E  1 Transition rates and dominant eigenvalue of the reverse 
transition matrices fitted to forest plots at Paracou, French Guiana.

Treatment b h r λ

T0 0.089 0.021 0.939 0.998

T1 0.109 0.042 0.918 0.988

T2 0.152 0.049 0.880 0.971

T3 0.169 0.061 0.863 0.966

Note: These plots underwent silvicultural treatments of increasing 
intensity, from T0 (control plots) to T3. b is the average reverse growth 
rate across diameter classes, h is the fecundity rate, r is the average 
stasis rate across diameter classes, and � is the dominant eigenvalue.
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    |  7PICARD et al.

less successful at retrodicting dynamics. The agreement be-
tween retrodictions and observations was acceptable for basal 
area (Figure 3c,d) but showed limitations for the density of trees 
(Figure S1c,d in Supporting Information S6).

As for forward matrix models, the long-term behaviour of RMM 
at Paracou was determined by the dominant eigenvalue of the re-
verse transition matrix V. The dominant eigenvalue decreased from 
control plots to the plots under treatment 3, following the opposite 
trend of the perturbation intensity (Table 1). All eigenvalues were less 
than one. Therefore, moving backwards from 2003, RMM predicted 
a long-term origin of the forest that was a void forest. However, this 
predicted backward decline (= recovery in the chronological order) 
was slow (almost at equilibrium) for controls plots. To summarize, 
the more intense the treatment, the faster the long-term backward 
decline.

3.2  |  Inversion of Lin et al.'s model

In Lin et al.'s density-dependent matrix model, the growth transition 
matrix G and the recruitment vector R linearly depend on N, so the 
application � that maps N onto G(N)N + R(N) depends quadratically 
on N. Therefore, the Jacobian J of G and the Jacobian D of R are con-
stant, whereas the Jacobian D� of � is linear with respect to N. The 
computations of the Jacobian matrices for Lin et al.'s matrix model 
are given in Supporting Information S3.

Starting from an empty plot, Lin et al.'s matrix projection model 
predicted a rapid increase in basal area (till ≈50 years), followed by 
slow dampened oscillations that finally converged (after ≈500 years) 

to a stable diameter structure (see black lines in Figure  4 and 
Supporting Information  S7). Starting from different initial diame-
ter structures, the same stable structure was reached (Figure 5 and 
Supporting Information S8). The dampened oscillations of basal area 
that are observed over time correspond to a spiral pattern in the 
phase space (Figure 5d).

Starting from an empty plot, the backward projections using the 
first-order approximation succeeded to follow the forward trajecto-
ries over at least 100 years (Figure 4, Figures S2–S4 and Table 2). In 
particular, when projecting the diameter distributions from T = 100 
years backwards, the backward model succeeded to go back to the 
initial state of an empty plot. When initiating the retrodiction from 
a state closer to the stable structure, the inversion method was able 
to follow the spiral of the phase space for a bit less than a cycle, then 
quickly diverged from it.

The numerical inversion method for backward projections had 
the same performance as the first-order approximation (Figure  4, 
Figures S2–S4). Backward projections with the numerical inversion 
method diverged from the forward projections at the same time as 
with the first-order approximation (Table 2). However, the comput-
ing time was 20 times longer with the numerical inversion method 
than with the first-order approximation.

The backward projections using the zero-order approxima-
tion succeeded to follow the forward trajectories over a shorter 
period of time than with the first-order approximation (Figure 4, 
Figures S2–S4). Accordingly, the divergence time with this method 
was closer to the time horizon of the forward projections (Table 2). 
The backward projections using RMM was able to follow the for-
ward trajectories over an even shorter period of time (Figure  4, 

F I G U R E  3  The retrodicted basal area 
of the rainforest at Paracou, French 
Guiana, matched observations from 2003 
back to 1988. Retrodiction was achieved 
using a reverse matrix model fitted to 
the observations of 2001 and 2003. The 
black line is the model retrodiction. The 
coloured line is the observed average 
trajectory and the shaded area is the 
observed envelope of the trajectories 
of twelve 1.5625-ha plots. These plots 
underwent silvicultural treatments 
between 1986 and 1988: (a) control 
plots (no treatment), (b) treatment 1 (low 
disturbance intensity), (c) treatment 2 
(medium disturbance intensity) and (d) 
treatment 3 (high disturbance intensity).

(a) (b)

(c) (d)
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8  |    PICARD et al.

F I G U R E  4  After 500 years of forward prediction using the density-dependent matrix model by Lin et al. (1996), and starting from the 
resulting state, backward projections closely tracked the predicted basal area for 62 to 207 years (depending on the inversion method) 
before quickly diverging. Top row shows the forward (black lines) and backward (coloured lines) projections of basal area; the three lines 
correspond to the three species groups of Lin et al. (1996). Bottom row shows the root mean square error of the retrodicted diameter 
structure, where the error is calculated with respect to the structure predicted by the forward model. Backward projections are made using 
four methods (in columns): Numerical inversion (“num”), first-order approximation (“1-order”), zero-order approximation (“0-order”) and 
reverse matrix model (“RMM”).

F I G U R E  5  In the forward projection, 
starting from different initial states, 
the density-dependent model by Lin 
et al. (1996) converged to the same 
equilibrium point. To avoid overloading 
the figure, only eight different initial 
states are shown. Projections are shown 
in the three-dimensional subspace of the 
phase space corresponding to the basal 
areas of the three species groups: (a) basal 
area of group II versus basal area of group 
I; (b) basal area of group III versus basal 
area of group I; (c) basal area of group III 
versus basal area of group I. Panel (d) is 
a zoom of the grey area shown in panel 
(b). Colours correspond to the time steps 
(early time is shown in green and late time 
in red).

(a) (b)

(c)

(d)
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    |  9PICARD et al.

Figures S2–S4). Its divergence time was closer to the time horizon 
of the forward projections than with the other inversion methods 
(Table 2).

Starting from an initial empty plot, the duration of agreement � 
between the forward and backward projections had a tendency to 
increase as the time horizon T of the forward projection increased 
(Figure 6). Nonetheless, the duration of agreement also depended 
on the specific position of the state reached at time T with respect to 
the stable structure. This dependence of � on the position resulted 
in a succession of peaks and troughs in the � versus T curve, sep-
arated by a duration equal to one cycle of the spiral of the phase 
space (Figure 6a). When following a forward trajectory, the succes-
sive position changed in a continuous way, so the � versus T curve 
also varied continuously. When plotting � against the distance to the 
stable structure, this was no longer true (Figure 6b). The succession 
of peaks and troughs along the cycles then resulted in an hysteresis 
pattern.

Whatever the inversion method used, the duration of agreement 
� was less sensitive to the recruitment parameters of the matrix 
model than to its growth or mortality parameters (Figure 7). RMM 
was the least sensitive inversion method to the parameters of the 
matrix model, while the zero-order approximation was the most sen-
sitive one.

4  |  DISCUSSION

Retrodiction allows the matrix models, a modelling approach that 
has proven effective in predicting future population dynamics, to 
now be applied for exploring and understanding past dynamics. To 
retrodict population dynamics using the matrix modelling frame-
work, one has two options: use a reverse matrix model or inverse 
a forward matrix model. The latter option can be preferred when a 
matrix model is already available. Inversion methods can thus ben-
efit from the large pool of existing matrix models (Salguero-Gómez 
et al., 2015, 2016). In contrast, when no forward model a priori ex-
ists and observations are to be used to build a model, the former 
option can be preferred. In both cases, one must remain aware of 
the functional assumptions made in any modelling work and of 
the influence that the model choice can have on predictions (Bell 
et al., 2013; Rueda-Cediel et al., 2015). Even when a forward matrix 
model already exists, RMM can be seen as a way to re-assess these 
assumptions.

4.1  |  Retrodiction using RMM

4.1.1  |  Defining RMM

We defined RMM using the counts of individuals in diameter classes 
and the proportions relative to the number of living individuals at 
time t + 1. This approach brought the same expression of the reverse 
growth rate as the retrodiction of the Markov chain based on the life 
cycle. Markov chain retrodiction tells us that we may end up with lit-
tle capacity to reconstruct the past if too much information is lost in 
the forward direction (Ellison et al., 2009; Rupprecht & Vural, 2018). 
Because matrix modelling loses the information on dead trees in the 
forward direction, we can anticipate that the perfect retrodiction 
of matrix models will not be possible. Nonetheless, matrix models 
depart from the Markov chain formalism in several aspects, so that 
results from Markov chain retrodiction cannot be directly applied to 
matrix modelling.

TA B L E  2  Divergence time between the forward projections of 
the density-dependent matrix model by Lin et al. (1996) and the 
backward projections, depending on the method used for model 
inversion and the time horizon of forward projections. An empty 
cell means that there was no divergence between the forward and 
backward projections.

Inversion method

Time horizon T (year)

100 300 500 700

Numerical inversion — 147 293 505

First-order approximation — 147 293 505

Zero-order approximation 21 200 377 585

Reverse matrix model 50 227 438 640

F I G U R E  6  The duration of agreement 
� between the forward and backward 
projections of the density-dependent 
matrix model by Lin et al. (1996) (a) non-
linearly depended on the time horizon 
T of the forward projection and (b) non-
uniquely depended on the distance to 
the stable diameter structure. Backward 
projections are made using four methods: 
Numerical inversion (red line), first-order 
approximation (red line too), zero-order 
approximation (green line) and reverse 
matrix model (cyan line). In (a), the dotted 
line is the line y = x.

(a) (b)
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10  |    PICARD et al.

Partial differential equations provide another standpoint on 
matrix model retrodiction. A matrix model can be seen indeed as 
a finite difference approximation of a partial differential equation 
(Caswell, 2001, Chap. 8; Takada & Hara, 1994). If the solution of 
the partial differential equation exists and is unique, it predicts 
the size structure of the population at any time, whether in the 
past or in the future (Ackleh et al., 2007). Nevertheless, because 
the matrix model is a dissipative finite difference scheme (Picard 
& Liang,  2014), this mathematical standpoint also let us expect 
some inherent limitation in reconstructing the past from current 
situation.

4.1.2  |  Possible applications of RMM

While this study primarily focuses on case studies with specific 
matrix models in the context of forest dynamics, the conceptual 
framework of RMM and its adaptability suggest broader applicabil-
ity across diverse ecosystems. Our objective was to define the struc-
ture of the transition matrix of RMM and the proportion estimators 
of its transition rates. We reckon that this initial step will make pos-
sible a diverse range of methodological developments, paralleling 
those of matrix modelling (Caswell, 2001).

The ability of the model to retrodict forest demography can 
be instrumental in ecosystem management (Tester et  al.,  1997). 
Effective ecosystem management requires to understand ecosys-
tem dynamics over long time horizons, including past historical dy-
namics (Beller et al., 2020). RMM can make the link between past, 
current and future population dynamics, thus contributing to histori-
cal ecology. RMM can specifically be employed to assess the success 

of forest restoration initiatives (Melichar et al., 2022). By comparing 
retrodicted and observed outcomes, practitioners can refine and 
adapt restoration strategies, ensuring that efforts align with pre-
designated ecological goals.

RMM's ability to project backward in time will also be useful for 
biodiversity conservation (Heppell et al., 2000). Conservationists 
can combine retrodictions and projections to assess the impact 
of management practices on different species and evaluate the 
efficacy of conservation interventions over extended periods 
(Crone et  al.,  2013). Populations may be structured by age or 
stage rather than size, leading to Leslie or Lefkovitch transition 
matrices instead of Usher matrices. The same reasoning used to 
define RMM for size-structured populations applies to age- or 
stage-structured populations. We also reckon that specific matrix 
modelling methods developed for species-rich ecosystems, like 
tropical rainforests or coral reefs, will be transferable to RMM 
(Mortier et al., 2015).

Specifically, the intrinsic rate of increase of a population given 
by the dominant eigenvalue � of the transition matrix is a key in-
strument in population viability analysis (Morris & Doak,  2002, 
Chap. 7). In the case study at Paracou, the long-term retrodicted 
dynamics of the population was also determined by the dom-
inant eigenvalue of the reverse transition matrix. 𝜆 < 1 in RMM 
corresponds to a growing population in the chronological order. 
However, the properties of � in matrix modelling result from the 
Perron-Frobenius theorem that stands for non-negative matrices. 
Because the reverse transition matrix V has negative terms, this 
theorem no longer applies to RMM. Further mathematical re-
search will be needed to relate the dominant eigenvalue of V to 
the long-term behaviour of RMM and develop life table response 
experiments for RMM (Caswell, 1989).

Furthermore, RMM will be useful to assess global change impact. 
Given the dynamic nature of ecosystems and the influence of exter-
nal factors such as climate change and land-use/land-cover change 
(Claeys et al., 2019), RMM provides a valuable tool for retroactively 
assessing the impacts on forest dynamics. It can also assist in recon-
structing past trajectories of forest carbon stocks, thereby enhanc-
ing our understanding of the current and future capacity of forests 
to mitigate climate change (Gasser et al., 2020; Magerl et al., 2019). 
By incorporating relevant environmental variables into the model as 
it has been done for matrix models (Liang et  al.,  2011), RMM can 
contribute to retrodicting how climate change has altered forest 
composition, structure and overall health.

In forestry, the application of RMM can aid in optimizing tim-
ber harvesting strategies and implement sustainable and eco-
nomically viable management (Lin et  al.,  1996). The case study at 
Paracou illustrated how to fit a RMM to data to retrodict dynam-
ics triggered by logging. The nonlinear post-logging dynamics and 
the dependence of the transition matrices on disturbance intensity 
suggested that a density-dependent RMM may be more appropri-
ate than a RMM with fixed coefficients. This conclusion is consis-
tent with Favrichon (1998) who fitted a density-dependent forward 
matrix model at Paracou. The same techniques used in matrix 

F I G U R E  7  Elasticities of the duration of agreement to the 
parameters of the density-dependent matrix model by Lin 
et al. (1996). The duration of agreement is computed using four 
inversion methods: Numerical inversion (orange), first-order 
approximation (red line), zero-order approximation (green) and 
reverse matrix model (cyan). The matrix model has 30 parameters 
that can be related to three dynamics processes: �-parameters 
(9 parameters) relate to recruitment, �-parameters (12) relate to 
growth, and �-parameters (9) relate to mortality.
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modelling to introduce density-dependence can be transferred to 
RMM (Caswell, 2001, Chap. 16; Solomon et al., 1986).

RMM's capability to retrodict past states and identify potential 
divergence points enhances its utility in risk assessment (Charles 
et  al.,  2009). Forest managers can use this information to eval-
uate resilience plans, preparing for and mitigating the impact of 
disturbances such as pests, diseases, or extreme weather events 
(Martinez-Ramos & Cristiän, 1997). Environmental stochasticity has 
been introduced in matrix modelling to account for natural distur-
bances, using matrix resampling, parametric matrix distribution, or 
stochastic shocks (Dalgleish et al., 2010; Davison et al., 2010). We 
reckon that the same techniques will be transferable to RMM.

Finally, the transparency of the RMM modelling process and its 
visualization through forward and backward projections make it an 
excellent tool for educational purposes. Communicating complex 
ecological concepts to various stakeholders, including policymak-
ers and the general public, can foster a broader understanding of 
the importance of sustainable forestry and conservation practices 
(Arrontes, 2021; Mugasha et al., 2017).

4.2  |  Inversion of predictions

When a forward matrix model is available, retrodiction can be 
achieved by inverting the function that maps the state at time t 
to the state at time t + 1. Inversion methods are thus analytical 
methods in the mathematical sense of the term. However, with 
the exception of RMM that offers interpretable parameters, they 
tell nothing about the backward transitions. The various inversion 
methods matched the predictions more or less well. Nonetheless, 
the numerical error of the inversion should not be confused 
with the prediction error of the model (Diele & Marangi,  2019; 
Petrovskii & Petrovskaya,  2012). If a forward matrix model has 
a poor predictive performance, matching it closely with a good 
inversion method will still bring a poor retrodiction. For that rea-
son, we still recommend RMM as an inversion method even if it 
diverged sooner from the forward dynamics than the other inver-
sion methods.

Inversion methods succeeded to retro-project the forest dy-
namics predicted by Lin et al.'s matrix model over several decades. 
These results will have to be confirmed with other matrix models. 
We reckon that these inversion methods will remain efficient as 
long as the matrix model is not too much nonlinear (i.e. if the � 
function that maps N onto O is smooth enough). Machine-learning 
methods (such as random-forest) are increasingly being used to 
fit density-dependent relationships in forest dynamics models and 
bring greater nonlinearity in those relationships (Liu et al., 2018; 
Ma et al., 2020).

When the starting point of the backward projection gets closer 
to the stationary state of the matrix model, the back-projection gets 
less and less able to retrodict when the past dynamics was still tran-
sient. As different starting points converge to the same steady state, 
knowing the ending point (i.e. the steady state) brings no information 

about the starting point (Rupprecht & Vural, 2018). In other words, 
moving towards a stationary state results in the loss of some infor-
mation and then there is an inherent limit to retrodiction due to the 
information lost on the way forward (Ellison et al., 2009; Rupprecht 
& Vural, 2018). Practically, before doing retrodiction, it may be use-
ful to map the attractors of a matrix models in its phase space as 
we did in Figure 5, so as to check where the starting point of back 
projection is located with respect to the steady state of the model.

When using RMM as an inversion method, the backward transi-
tion matrix obtained is not exactly the inverse of the forward tran-
sition matrix. The product of G and C rather is a tridiagonal matrix 
(Supporting Information  S4). Takada and Hara  (1994) showed that 
such tridiagonal transition can be interpreted as the transition ma-
trix of a diffusion process. Consider the i th size class that contain a 
given number of individuals. If C was the inverse of G, computing one 
step forward and one step backward would result in all individuals 
staying in class i . With the tridiagonal matrix, most of the individu-
als are still in class i  but a small proportion of them has also spread 
to classes i − 1 and i + 1. Diffusion terms in transition matrix can be 
introduced to account for growth variability (Takada & Hara, 1994). 
It remains to be seen if the off-diagonal terms in GC and CG are con-
sistent with individual growth variability.

5  |  CONCLUSIONS

RMM is an approach to retrodict the matrix model used in ecology 
to project population dynamics. Its transition rates are similar to the 
transition probabilities of the retrodicted Markov chain associated to 
the life cycle of the population dynamics, with a major difference as 
regards mortality. RMM was able to retrodict the dynamics of a dis-
turbed tropical rainforest and back-project the dynamics predicted 
by Lin et al.'s density-dependent matrix model over a few decades. 
Inversion methods based on the inversion of the recurrence relation-
ship of the matrix model were able to back-project predictions over 
a longer period of time. Because a model is a simplified representa-
tion of reality, when having data to fit a model without knowing the 
true forest dynamics, it makes more sense to fit a RMM than to fit a 
matrix model and inverse it.
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Appendix A. RMM using retrodiction of
Markov chains

Retrodiction of forest demography: backward simulation

with reverse matrix models

The life cycle interpretation of matrix models does not fully comply with a Markov
chain because of reproduction or regeneration. At least, the growth and death transitions
of the life cycle can be interpreted as a Markov chain. Therefore, let us consider a cohort
of trees that grow or die without regenerating. The ‘dead’ state is added to the diameter
classes so that the set of possible Markov chain transitions is complete. Referring to
Figure 1, let Xt be the state of a tree at time t, which can be the ith diameter class
(Xt = i) or death (Xt = †). Retrodiction of Markov chains commonly relies on Bayes’
theorem (Surace & Scandi, 2023). For the reverse growth rate bi, Bayes’s theorem gives:

bi ≡ Pr(Xt = i− 1|Xt+1 = i) =
Pr(Xt+1 = i|Xt = i− 1) Pr(Xt = i− 1)

Pr(Xt+1 = i)

By definition, the probability Pr(Xt+1 = i|Xt = i−1) identifies with pi−1, and Pr(Xt = j)
for any diameter class j is proportional to Nj. Moreover, by the law of total probability:

Pr(Xt+1 = i) =
∑
j

Pr(Xt+1 = i|Xt = j) Pr(Xt = j)

For i ≥ 2, the life cycle (Figure 1) shows that there are only two possible transitions
towards diameter class i, so:

Pr(Xt+1 = i) = Pr(Xt+1 = i|Xt = i−1) Pr(Xt = i−1)+Pr(Xt+1 = i|Xt = i) Pr(Xt = i)

Therefore:

bi =
pi−1Ni−1

pi−1Ni−1 + qiNi

=
pi−1

pi−1 + qiηi
(1)

where ηi = Ni/Ni−1. Similar calculations for the stasis rate bring: ri ≡ Pr(Xt = i|Xt+1 =
i) = qi/(qi + pi−1/ηi) for i ≥ 2 and r1 = 1. The two transition rates sum to one:
ri + bi = 1. The difference between RMM and the retrodiction of the Markov chain lies
in the mortality process. The stochastic matrix of the Markov chain associated to the
life cycle shown in Figure 1 and the stochastic matrix of the retrodicted Markov chain
are respectively: 

0

G
...
0

m1 . . . mK 1

 and


d1

C
...
dK

0 . . . 0 d†



1



2

where di ≡ Pr(Xt = i|Xt+1 = †) for i ≤ K are the revival rates and d† ≡ Pr(Xt =

†|Xt+1 = †). Again, the application of Bayes’ theorem gives: di = miwi/(w†+
∑K

j=1mjwj)

and d† = w†/(w† +
∑K

j=1mjwj), where wi = Ni/(N† +
∑K

j=1 Nj) and w† = N†/(N† +∑K
j=1 Nj). In the matrix model, the projection of the number Ni of trees in each of the K

diameter classes does not require to know the number N† of dead trees. This is no longer
true with the retrodiction of the Markov chain. RMM can thus be seen as an adjustment
of the retrodiction of the Markov chain so that the number of dead trees is not needed.
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Retrodiction of forest demography: backward simulation

with reverse matrix models

S1. List of symbols

The length of vectors and dimensions of matrices are given for a single population with
K size classes. If there are S populations, as in the matrix model by Lin et al. (1996)
where S = 3, K has to be replaced by SK.

⊗: Kronecker product of two matrices
⊙: Hadamard product of two matrices
†: dead state of an individual in its life cycle

0n: vector of length n full of zeros
1n: vector of length n full of ones
αgk: coefficients of the linear relationship between the recruitment rates, basal area and

tree density in the matrix model of Lin et al. (1996)
αk: vector that collates the αgks
βg: slope of the linear relationship between the upgrowth rates and basal area in the

matrix model of Lin et al. (1996)
βgi: intercept of the linear relationship between the upgrowth rates and basal area in

the matrix model of Lin et al. (1996)
β0: vector that collates the βgis
β1: vector that collates the βgs
δ: parameters related to mortality in the matrix model of Lin et al. (1996)
ηi: ratio of the number of individuals in size class i at time t over the number of

individuals in size class i− 1 at time t
λ: dominant eigenvalue of a transition matrix
τ : duration of agreement
ϕ: recurrence relationship of the matrix model, i.e. application that maps N onto

G(N )N +R(N )
AK : square matrix of dimensionK obtained from a Usher transition matrix of dimension

K + 1 by removing its first row and first column
bi: reverse growth rate of the ith size class of the reverse matrix model, i.e. conditional

probability that an individual was in the (i− 1)th size class at time t knowing that
it is in the ith size class at time t+ 1

B: basal area of a forest stand
B: vector of length K giving the average basal area of trees in each diameter class
Bn: vector of length nK that repeats B n times
C: transition matrix of the reverse matrix model (K ×K matrix)
di: revival rate of the ith size class of the reverse matrix model, i.e. conditional prob-

ability that an individual was in the ith size class at time t knowing that it is dead
at time t+ 1

1
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D: Jacobian matrix of the application that maps N onto R(N ), i.e. K × K matrix
whose ij-th term is the partial derivative of the ith element of R with respect to
the jth element of N

Dϕ: Jacobian matrix of ϕ, i.e. K×K matrix whose ij-th element is the partial derivative
of the ith element of ϕ(N ) with respect to the jth element of N

E: vector of length K composed of K − 1 ones followed by zero
f : average fecundity rate, i.e. ratio of the total number of offspring over the total

number of living trees
fi: fecundity rate in the ith size class of the matrix model, i.e. expected number of

offspring generated by an individual in the ith size class between times t and t+ 1
f : vector of fecundities (vector of length K whose ith element is fi)
g: index of species group in the matrix model of Lin et al. (1996)
G: transition matrix of the matrix model (K ×K matrix)
h: average fecundity rate of the reverse matrix model
i: index of a size class = one of the states of the life cycle of an individual in a

size-structured population
In: n× n identity matrix
J : Jacobian matrix of the application that maps N onto G(N ), i.e. K2 ×K matrix

whose ij-th term is the partial derivative of the ith element of vecG with respect
to the jth element of N

K: number of size classes
mi: mortality rate of the ith size class of the matrix model, i.e. conditional probability

that an individual is dead at time t+ 1 knowing that it was in the ith size class at
time t

m: vector that collates the mis
Mi: given a dataset of observed individuals at times t and t+ 1, number of individuals

in size class i that die between t and t+ 1
Ni: number of living individuals in size class i at time t
N : vector of the abundances of individuals in the size classes at time t (vector of length

K)
Oi: number of living individuals in size class i at time t+ 1
O: vector of the abundances of individuals in the size classes at time t + 1 (vector of

length K)
pi: upgrowth rate of the ith size class of the matrix model, i.e. conditional probability

that an individual is in the (i+ 1)th size class at time t+ 1 knowing that it was in
the ith size class at time t

p: vector that collates the pis
Pi: given a dataset of observed individuals at times t and t+ 1, number of individuals

that move up from size class i to i+ 1 between t and t+ 1
qi: stasis rate of the ith size class of the matrix model, i.e. conditional probability that

an individual is in the ith size class at time t+1 knowing that it was in the ith size
class at time t

Qi: given a dataset of observed individuals at times t and t+ 1, number of individuals
that stay alive in size class i between t and t+ 1

ri: stasis rate of the ith size class of the reverse matrix model, i.e. conditional proba-
bility that an individual was in the ith size class at time t knowing that it is in the
ith size class at time t+ 1

R: number of recruited trees between t and t+ 1
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Rg: recruitment rate of species group g in the matrix model of Lin et al. (1996)
R: recruitment vector (vector of length K)
s: discrete-time index
S: number of populations in a multi-population matrix model (e.g. S = 3 in the

matrix model of Lin et al., 1996)
t: discrete-time index

tdiv: divergence time
T : time horizon of the forward projection = starting time of the backward projection
U : Usher transition matrix (K ×K matrix)
V : reverse transition matrix that is analogue of the Usher transition matrix in the

reverse case (K ×K matrix)
wi: proportion of individuals in the ith size class at time t

Wn: square n × n matrix full of zeros with the exception of its subdiagonal that is full
of ones

Xt: random state at time t of an individual of a size-structured population when de-
scribing its life cycle by a Markov chain

S2. Invertibility of a Usher transition matrix

Let U be a Usher transition matrix:

U =


q1 + f1 f2 . . . fK

p1 q2 0
. . . . . .

0 pK−1 qK


Using Laplace expansion along its first column, the determinant of U can be computed
as:

|U | = (q1 + f1)q2 . . . qK − p1|AK−1| (1)

where AK−1 is the square matrix of dimension K − 1:

AK−1 =


f2 f3 . . . fK
p2 q3 0

. . . . . .

0 pK−1 qK


The following proposition specifies a sufficient condition to obtain a range for |AK−1|.

Proposition 1: Let AK be a square matrix of dimension K defined by

AK =


f1 f2 . . . fK
p1 q2 0

. . . . . .

0 pK−1 qK


with 0 < pi < 1, 0 < qi < 1 and fi > 0. Let fmin = min{f1, . . . , fK}, fmax =
max{f1, . . . , fK}, qmin = min{q1, . . . , qK} and pmin = min{p1, . . . , pK−1}. If fminqmin >
fmaxpmax, then 0 < |AK | < fmax q2 . . . qK .
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Proof. We prove the proposition by induction. For K = 2,

|A2| =
∣∣∣∣ f1 f2
p1 q2

∣∣∣∣ = f1q2 − f2p1

Because f2p1 > 0, |A2| < f1q2 ≤ fmaxq2. Moreover, f1q2 ≥ fminqmin and fmaxpmax ≥ f2p1,
therefore fminqmin > fmaxpmax implies f1q2 > f2q1, that is |A2| > 0.

Now assume that the proposition holds for 1, 2, . . . , K − 1, and let’s demonstrate it
for K. Using Laplace expansion along the first column of AK , the determinant of AK is:

|AK | = f1q2 . . . qK − p1|AK−1|

Because |AK−1| > 0, |AK | < f1q2 . . . qK ≤ fmaxq2 . . . qK . Moreover, |AK−1| < fmaxq3 . . . qK
implies: −p1|AK−1| > −p1fmaxq3 . . . qK . Therefore,

|AK | > f1q2 . . . qk − p1fmaxq3 . . . qK

|AK | > (f1q2 − p1fmax) q3 . . . qk

The condition fminqmin > fmaxpmax implies f1q2 − p1fmax > 0, and therefore |AK | > 0. ■

Turning back to eq. (1), we see that |U | = q1 . . . qK + |AK |, so |AK | > 0 readily
implies |U | > 0. Therefore, fminqmin > fmaxpmax is a sufficient condition for U to be
invertible. This condition is mild in real-life situations. Most of the time, it is not
possible to estimate the fecundity rate of each class separately because it is not possible
to trace back the parent tree of a newly recruited tree, so a common fecundity rate is
used: f1 = f2 = . . . = fK . Then fmin = fmax, and the condition boils down to comparing
qmin and pmax. Because tree growth is slow, the probability to stay in a class is often close
to 1, while the probability to move up from one class to the next one is often close to 0.
Therefore, we naturally almost always have: qi > pj for all i and j, so that the condition
is met.

In some cases, a distinction is made between reproducing and non-reproducing size
classes, i.e. there is a threshold s ∈ [1, . . . , K] such that fi = 0 for i < s. In this case,
fmin = 0 and the condition fminqmin > fmaxpmax is not met. Nonetheless, U can still be
invertible in this case.

S3. Jacobian of the density-dependent matrix model of Lin et al.
(1996)

We concatenate the vectors of the three species groups into a single vector of length 3K:
N = [NI,NII,NIII]. Given the vector B of length K that gives the average basal area
of trees in each diameter class, let B3 = 13 ⊗B the vector of length 3K that repeats B
three times. Thus, the plot basal area writes B = tB3N .

As regards the growth transition matrix, let β0
g = [βg1, . . . , βgK ] (with βgK = 0) and

β0 = [β0
I ,β

0
II,β

0
III], and similarly pg = [pg1, . . . , pgK ] and p = [pI,pII,pIII], and mg =

[mg1, . . . ,mgK ] and m = [mI,mII,mIII]. Let E = [1K−1, 0] and β1 = [βIE, βIIE, βIIIE],
so that: p = β0 + Bβ1. The growth transition matrix G for the three species groups is
the 3K×3K matrix whose diagonal vector is 13K −m−p and whose subdiagonal vector
is p (disregarding the last element of this vector). In other words:

G(N ) = I3K ⊙ {13K
t[13K −m− p]}+W3K ⊙ [13K

tp]
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where ⊙ denotes the Hadamard product (Magnus & Neudecker, 2007, p.53) and Wn is
the square n× n matrix full of zeros with the exception of its subdiagonal that is full of
ones. Replacing p by β0 +Bβ1 gives:

G(N ) = I3K ⊙ {13K
t[13K −m− β0]}+W3K ⊙ [13K

tβ0]

+B{[W3K − I3K ]⊙ [13K
tβ1]}

By definition, the Jacobian matrix J of G is the (3K)2 × 3K matrix whose ij-th term
is the partial derivative of the ith element of vecG with respect to the jth element of
N , where vec is the operator that stacks the columns of a matrix one underneath the
other (Magnus & Neudecker, 2007, p.34). The first two terms in the above expression of
G do not depend on N . The third term linearly depends on N . Therefore, the Jacobian
matrix of G is constant:

J = vec {[W3K − I3K ]⊙ [13K
tβ1]} tB3

In the expression of J , the matrix within the vec operator simply is the square 3K× 3K
matrix with diagonal −β1, subdiagonal β1 (dropping the last element of this vector) and
zero elsewhere.

As regards recruitment, let R = [RI,RII,RIII] be the vector of length 3K that con-
catenates the recruitment vectors of the three species groups. Let αgk be the vector
of length K defined as αgk [1,0K−1], where 0n is the vector of length n full of zeros,
and let αk = [αIk,αIIk,αIIIk] be the vector of length 3K that concatenates the αgks for
k = 0, 1, 2. The recruitment vector thus is written as:

R(N ) = α0 + (tB3N )α1 +α2 ⊙ [(I3 ⊗ t1K ⊗ 1K)N ]

By definition, the Jacobian matrix D of R is the 3K × 3K matrix whose ij-th term is
the partial derivative of the ith element of R with respect to the jth element of N . The
first term in the above expression of R does not depend on N . The second and third
terms linearly depend on N . Therefore, the Jacobian matrix of R is constant:

D = α1
tB3 + (t13K ⊗α2)⊙ (I3 ⊗ t1K ⊗ 1K)

S4. Product of a forward and backward transition matrix

Let G be a forward transition matrix as given by eq. (1) and let C be a backward
transition matrix as given by eq. (2). Their product is:

GC =


q1r1 q1b2 0 0
r1p1 (q2r2 + p1b2) q2b3

0 r2p2 (q3r3 + p2b3)
. . .

. . . . . . qK−1bK
0 rK−1pK−1 (qKrK + pK−1bK)

 (2)

and

CG =


(q1r1 + p1b2) q2b2 0 0

r2p1 (q2r2 + p2b3) q3b3

0 r3p2
. . . . . .
. . . (qK−1rK−1 + pK−1bK) qKbK

0 rKpK−1 qKrK

 (3)
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Matrix GC has a diagonal whose ith term is qiri + pi−1bi (except the first term that
is q1r1), a subdiagonal whose ith term is ripi, and a superdiagonal whose ith term is
qibi+1. The rest of the matrix is null. Matrix CG has a diagonal whose ith term is
qiri + pibi+1 (except the last term that is qKrK), a subdiagonal whose ith term is ri+1pi,
and a superdiagonal whose ith term is qibi. Using the expressions (6), one can show that
q1r1 = 1− p1, qiri = (1− pi)(1− bi) for i = 2, . . . , K− 1 and qKrK = 1− bK . Considering
that pi ≪ 1 and bi ≪ 1, these equations show that GC and CG are actually close to
the identity matrix.

S5. Backward transition matrices at Paracou

For each treatment, we give the observed number of trees in the 11 diameter class in 2001
(Nobs, on the left-hand side of the matrix relationship), the observed number of trees
in the 11 diameter class in 2003 (Oobs, on the right-hand side), and the fitted backward
transition matrix (Vfitted). The estimators of the reverse transition rates given in Section
2.2 ensure that: Nobs = VfittedOobs).

• Control plots:



4461
2386
1450
925
638
530
336
236
162
110
231


=



0.9976 0.0388 −0.0206 −0.0206 −0.0206 −0.0206 −0.0206 −0.0206 −0.0206 −0.0206 −0.0206
0 0.9634 0.0690 0 0 0 0 0 0 0 0
0 0 0.9526 0.0884 0 0 0 0 0 0 0
0 0 0 0.9276 0.0854 0 0 0 0 0 0
0 0 0 0 0.9335 0.0899 0 0 0 0 0
0 0 0 0 0 0.9307 0.0965 0 0 0 0
0 0 0 0 0 0 0.9211 0.0925 0 0 0
0 0 0 0 0 0 0 0.9207 0.1588 0 0
0 0 0 0 0 0 0 0 0.8765 0.1161 0
0 0 0 0 0 0 0 0 0 0.9107 0.0339
0 0 0 0 0 0 0 0 0 0 0.9788





4475
2374
1435
939
632
534
342
227
170
112
236



• Treatment 1:



4570
2411
1434
884
640
473
295
218
133
85

166


=



0.9771 0.0401 −0.0423 −0.0423 −0.0423 −0.0423 −0.0423 −0.0423 −0.0423 −0.0423 −0.0423
0 0.9378 0.1193 0 0 0 0 0 0 0 0
0 0 0.8934 0.1040 0 0 0 0 0 0 0
0 0 0 0.9116 0.1087 0 0 0 0 0 0
0 0 0 0 0.9024 0.1354 0 0 0 0 0
0 0 0 0 0 0.8788 0.1271 0 0 0 0
0 0 0 0 0 0 0.8829 0.1372 0 0 0
0 0 0 0 0 0 0 0.8805 0.1348 0 0
0 0 0 0 0 0 0 0 0.8794 0.1047 0
0 0 0 0 0 0 0 0 0 0.9186 0.0357
0 0 0 0 0 0 0 0 0 0 0.9881





4772
2380
1501
894
635
495
299
226
141
86

168



• Treatment 2:



5443
2784
1673
950
679
423
262
130
72
44
44


=



0.9714 0.0656 −0.0491 −0.0491 −0.0491 −0.0491 −0.0491 −0.0491 −0.0491 −0.0491 −0.0491
0 0.9038 0.1190 0 0 0 0 0 0 0 0
0 0 0.9024 0.1587 0 0 0 0 0 0 0
0 0 0 0.8524 0.1524 0 0 0 0 0 0
0 0 0 0 0.8675 0.1580 0 0 0 0 0
0 0 0 0 0 0.8510 0.1673 0 0 0 0
0 0 0 0 0 0 0.8400 0.2109 0 0 0
0 0 0 0 0 0 0 0.8027 0.1558 0 0
0 0 0 0 0 0 0 0 0.8571 0.1429 0
0 0 0 0 0 0 0 0 0 0.8810 0.1429
0 0 0 0 0 0 0 0 0 0 0.8980





5633
2859
1680
989
702
443
275
147
77
42
49



• Treatment 3:
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

6397
2863
1509
877
560
488
212
100
61
42
29


=



0.9665 0.0879 −0.0610 −0.0610 −0.0610 −0.0610 −0.0610 −0.0610 −0.0610 −0.0610 −0.0610
0 0.8683 0.1501 0 0 0 0 0 0 0 0
0 0 0.8662 0.1433 0 0 0 0 0 0 0
0 0 0 0.8666 0.1527 0 0 0 0 0 0
0 0 0 0 0.8641 0.0939 0 0 0 0 0
0 0 0 0 0 0.9207 0.1950 0 0 0 0
0 0 0 0 0 0 0.8216 0.1429 0 0 0
0 0 0 0 0 0 0 0.8980 0.1905 0 0
0 0 0 0 0 0 0 0 0.8095 0.2326 0
0 0 0 0 0 0 0 0 0 0.7674 0.2432
0 0 0 0 0 0 0 0 0 0 0.7838





6600
3022
1592
907
596
479
241
98
63
43
37



S6. Retrodicted forest dynamics at Paracou, French Guiana
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Fig. S1: Retrodiction of the tree density of the rainforest at Paracou, French Guiana,
using a reverse matrix model fitted to the observations of 2001 and 2003. The
black line is the model prediction. The colored line is the observed average
trajectory and the shaded area is the observed envelope of the trajectories of
twelve 1.5625-ha plots. These plots underwent silvicultural treatments between
1986 and 1988: (a) control plots (no treatment), (b) treatment 1 (low disturbance
intensity), (c) treatment 2 (medium disturbance intensity), (d) treatment 3 (high
disturbance intensity).
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Fig. S2: Forward and backward projections of the basal area of a forest using the density-
dependent matrix model by Lin et al. (1996). The time horizon of forward projec-
tions varies from T = 100 years (leftmost column) to T = 700 years (rightmost
column). Backward projections are made using four methods: numerical in-
version (row denoted “num”), first-order approximation (“1-order”), zero-order
approximation (“0-order”), Reverse Matrix Model (“RMM”). In each panel, the
three lines correspond to the three species groups of Lin et al. (1996). Black lines
are forward projections, colored lines are backward projections.
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Fig. S3: Forward and backward projections of the tree density of a forest using the
density-dependent matrix model by Lin et al. (1996). The time horizon of for-
ward projections varies from T = 100 years (leftmost column) to T = 700 years
(rightmost column). Backward projections are made using four methods: nu-
merical inversion (row denoted “num”), first-order approximation (“1-order”),
zero-order approximation (“0-order”), Reverse Matrix Model (“RMM”). In each
panel, the three lines correspond to the three species groups of Lin et al. (1996).
Black lines are forward projections, colored lines are backward projections.
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Fig. S4: Root mean square error of the retrodicted diameter structure of a forest, where
the error of the retrodicted structure is calculated with respect to the struc-
ture predicted by the density-dependent matrix model by Lin et al. (1996). The
time horizon of forward projections varies from T = 100 years (leftmost column)
to T = 700 years (rightmost column). Backward projections are made using
four methods: numerical inversion (row denoted “num”), first-order approxima-
tion (“1-order”), zero-order approximation (“0-order”), Reverse Matrix Model
(“RMM”).
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Supporting Information

Retrodiction of forest demography: backward simulation

with reverse matrix models

S9. Comments on the R code

backtrans. The backtrans function computes a backward growth transition matrix
from a forward growth transition matrix and the current diameter structure. For instance,
a growth transition matrix for Entandrophragma cylindricum is (COMPADRE matrix
#247558, https://compadre-db.org/Species/47283):

x <- matrix(c(0.972117, 0, 0, 0, 0, 0, 0, 0.026148, 0.949314, 0, 0, 0, 0, 0,

0, 0.041553, 0.911738, 0, 0, 0, 0, 0, 0, 0.07913, 0.819965, 0, 0, 0, 0, 0,

0, 0.170903, 0.814529, 0, 0, 0, 0, 0, 0, 0.176338, 0.804234, 0, 0, 0, 0, 0,

0, 0.186634, 0.990868), 7, byrow=TRUE)

For a uniform size structure, the backward growth transition obtained from x is:

backtrans(x, rep(1, 7))

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.001785 0.02680576 0.0000000 0.00000000 0.0000000 0.0000000 0.0000000

[2,] 0.000000 0.98255698 0.0435890 0.00000000 0.0000000 0.0000000 0.0000000

[3,] 0.000000 0.00000000 0.9659904 0.08801072 0.0000000 0.0000000 0.0000000

[4,] 0.000000 0.00000000 0.0000000 0.92214616 0.1734295 0.0000000 0.0000000

[5,] 0.000000 0.00000000 0.0000000 0.00000000 0.8358385 0.1798318 0.0000000

[6,] 0.000000 0.00000000 0.0000000 0.00000000 0.0000000 0.8294812 0.1584999

[7,] 0.000000 0.00000000 0.0000000 0.00000000 0.0000000 0.0000000 0.8492555

For a geometrically decreasing size structure, it becomes:

backtrans(x, 0.5^(0:6))

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.001785 0.05221194 0.00000000 0.0000000 0.0000000 0.0000000 0.0000000

[2,] 0.000000 0.95690638 0.08353672 0.0000000 0.0000000 0.0000000 0.0000000

[3,] 0.000000 0.00000000 0.92564261 0.1617828 0.0000000 0.0000000 0.0000000

[4,] 0.000000 0.00000000 0.00000000 0.8475525 0.2955943 0.0000000 0.0000000

[5,] 0.000000 0.00000000 0.00000000 0.0000000 0.7123040 0.3048431 0.0000000

[6,] 0.000000 0.00000000 0.00000000 0.0000000 0.0000000 0.7030504 0.2736296

[7,] 0.000000 0.00000000 0.00000000 0.0000000 0.0000000 0.0000000 0.7330647

1
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lin96. The lin96 function performs forward projection and backward retrodiction of Lin
et al.’s density-dependent matrix model. Retrodiction can be achieved with four inversion
methods. By default, the initial state is an empty plot. To predict the state of the forest
at year 300, the command is: x <- lin96(tmax=300, direction="forward"). The
final size structure is:

c(x$N)

[1] 440.5134424 145.6140188 71.2230832 42.8568124 29.3079380 21.7987933

[7] 17.1198835 13.8533728 11.2661934 8.9359088 6.6365081 8.0816202

[13] 36.1248587 9.3961047 3.7339482 1.9484527 1.2746403 1.0236757

[19] 0.9682634 1.0066783 1.0691262 1.0909483 1.0172557 2.1957118

[25] 47.0053753 10.3408346 3.1369528 1.0878761 0.4369080 0.2840420

[31] 0.3477773 0.5133974 0.7107542 0.8750458 0.9398427 2.1998746

Now let’s predict the state of the forest at year 350 and retrodict it by 50 years, so as to
go back to the state of the forest at year 300. The state of the forest at year 350 is given
as before: y <- lin96(tmax=350, direction="forward"). When using the zero-order
linear approximation as the inversion method, retrodiction over 50 years is obtained as:
z <- lin96(y$N, tmax=50, direction="backward", method="lin0"). The resulting
size structure is:

c(z$N)

[1] 440.9099975 145.7083961 71.4056396 42.9234726 29.3581548 21.8220650

[7] 17.1207081 13.8431935 11.2468742 8.9160017 6.6210297 8.0784638

[13] 36.2086037 9.4415105 3.7866975 1.9487815 1.2860456 1.0186158

[19] 0.9628681 0.9962843 1.0577456 1.0797272 1.0083329 2.1893031

[25] 47.0566714 10.5618776 3.3150239 1.0490887 0.5099222 0.2549266

[31] 0.3547649 0.4916455 0.6942365 0.8547708 0.9231371 2.1799661

To use the first-order linear approximation as the inversion method, the command be-
comes: z <- lin96(y$N, tmax=50, direction="backward", method="lin1"), and the
resulting size structure is:

c(z$N)

[1] 440.8711115 145.8431489 71.3623019 42.9418675 29.3567663 21.8213016

[7] 17.1227573 13.8424333 11.2475331 8.9160101 6.6212376 8.0789789

[13] 36.3006995 9.4638429 3.7649258 1.9626233 1.2792008 1.0217545

[19] 0.9616082 0.9967436 1.0575836 1.0797666 1.0083257 2.1894161

[25] 47.6033913 10.5477067 3.2288341 1.1312102 0.4546689 0.2861415

[31] 0.3394541 0.4981946 0.6917965 0.8555298 0.9229339 2.1800416

To use the numerical inversion as the inversion method, the command becomes: z <-

lin96(y$N, tmax=50, direction="backward", method="num"), and the resulting size
structure is:

c(z$N)
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[1] 440.8711115 145.8431489 71.3623019 42.9418675 29.3567663 21.8213016

[7] 17.1227573 13.8424333 11.2475331 8.9160101 6.6212376 8.0789789

[13] 36.3006995 9.4638429 3.7649258 1.9626233 1.2792008 1.0217545

[19] 0.9616082 0.9967436 1.0575836 1.0797666 1.0083257 2.1894161

[25] 47.6033913 10.5477067 3.2288341 1.1312102 0.4546689 0.2861415

[31] 0.3394541 0.4981946 0.6917965 0.8555298 0.9229339 2.1800416

Finally, to use RMM as the inversion method, the command becomes: z <- lin96(y$N,

tmax=50, direction="backward", method="trans"), and the resulting size structure
is:

c(z$N)

[1] 440.4499092 146.2505316 71.2751607 43.0195119 29.3516997 21.8309586

[7] 17.1160414 13.8304012 11.2309566 8.8988737 6.5883554 8.1148316

[13] 36.0441202 9.6440783 3.7241585 1.9891733 1.2766871 1.0217430

[19] 0.9559211 0.9913534 1.0539252 1.0767442 0.9882590 2.2168478

[25] 46.4619329 11.2891339 3.0125472 1.2619642 0.4546782 0.3100076

[31] 0.3148011 0.4642630 0.6935197 0.8626254 0.8934278 2.2180646

RMM. The RMM function fits a reverse matrix model to observations. Let’s first generate
a virtual dataset. We generate 5,000 observations that correspond to trees with a uniform
diameter distribution in the range 10 cm–80 m. The initial size of individuals is given a
column named initial:

set.seed(0)

data <- data.frame(initial=runif(5000, 10, 80))

We assume that all trees grow by 1 cm per year. The final size of individuals is given in
a column named final:

data <- cbind(data, final=data$initial+1)

We finally assume that 2% of individuals die and that 2% of individuals are newly re-
cruited individuals. Dead individuals are indicated by a NA value in the final column
while newly recruited individuals are indicated by a NA value in the initial column:

data[sample(5000, 5000*0.02), 1] <- NA

data[sample(5000, 5000*0.02), 2] <- NA

data$final[is.na(data$initial)] <- 10

We use diameter classes 10 cm wide. Therefore, on average, 10% of trees will move up
from one class to the next one. To fit RMM, the command is:

r <- RMM(data, breaks=seq(10, 70, by=10))[[1]]

The output is a list with the three elements: r$N gives the initial size structure, r$O gives
the final size structure, and the backward transition matrix is given by

r$C
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[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.9986031 0.07859769 -0.0207999 -0.02079990 -0.0207999 -0.02079990 -0.02079990

[2,] 0.0000000 0.92168675 0.1042524 0.00000000 0.0000000 0.00000000 0.00000000

[3,] 0.0000000 0.00000000 0.9135802 0.09745127 0.0000000 0.00000000 0.00000000

[4,] 0.0000000 0.00000000 0.0000000 0.92053973 0.1062092 0.00000000 0.00000000

[5,] 0.0000000 0.00000000 0.0000000 0.00000000 0.9150327 0.08545727 0.00000000

[6,] 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.94002999 0.07449495

[7,] 0.0000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.94696970

We can check that the initial size structure is exactly given by the final size structure
and the backward transition matrix:

c(r$C %*% r$O)

[1] 749 688 731 679 617 686 750

c(r$N)

1 2 3 4 5 6 7

749 688 731 679 617 686 750

In this default setting, recruitment appears a fecundity rate on the first row of the transi-
tion matrix (with a negative sign because recruitment is removed from the first size class
when moving backward). An alternative is to consider recruitment as an additional term.
The fitting of RMM is then performed by the following command:

r <- RMM(data, breaks=seq(10, 70, by=10), recruitment="additional")[[1]]

The output now has an additional term r$R that gives the number of recruited trees:

r$C

[1] 100

The backward transition matrix now is:

r$C

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.019403 0.09939759 0.0000000 0.00000000 0.0000000 0.00000000 0.00000000

[2,] 0.000000 0.92168675 0.1042524 0.00000000 0.0000000 0.00000000 0.00000000

[3,] 0.000000 0.00000000 0.9135802 0.09745127 0.0000000 0.00000000 0.00000000

[4,] 0.000000 0.00000000 0.0000000 0.92053973 0.1062092 0.00000000 0.00000000

[5,] 0.000000 0.00000000 0.0000000 0.00000000 0.9150327 0.08545727 0.00000000

[6,] 0.000000 0.00000000 0.0000000 0.00000000 0.0000000 0.94002999 0.07449495

[7,] 0.000000 0.00000000 0.0000000 0.00000000 0.0000000 0.00000000 0.94696970

The initial size structure is again exactly given by the backward transition matrix and
the final size structure from which the recruitment is now removed:

c(r$C %*% c(r$O-c(r$R,rep(0,6))))

[1] 749 688 731 679 617 686 750
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